Unitarity and Universality

Similar documents
V us. Roma, 12 December 2003

Test of the Standard Model with Kaon decays. Barbara Sciascia LNF-INFN for the Kaon WG, FlaviaNet PhiPsi08 - LNF, 7 April 2008

Status of KLOE and DAFNE

Roberto Versaci on behalf of the KLOE collaboration. e+e- collisions from φ to ψ

Lepton Universality Tests with Kaons

Mostly KLOE. LNF, 15 April 2002

Scalar mesons at KLOE

Electroweak Theory: 2

Gamma-Gamma Physics and Transition Form Factors with KLOE/KLOE-2

Lecture 12 Weak Decays of Hadrons

Measurement of the η mass by the NA48 Experiment

Physics at Hadron Colliders

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider

Hadron physics at KLOE and KLOE-2

Kaon Decays in the Standard Model

Nicolas Berger SLAC, Menlo Park, California, U.S.A.

Review of Standard Tau Decays from B Factories

Search for heavy neutrinos in kaon decays

CLEO c. Anders Ryd Cornell University June 7, e e cc D D. D K,D K e

Experimental Measurement of the Φ meson radiative decays into scalars and pseudoscalars mesons

Electroweak Physics at the Tevatron

V ud, V us, THE CABIBBO ANGLE, AND CKM UNITARITY Updated March 2012 by E. Blucher (Univ. of Chicago) and W.J. Marciano (BNL)

D Hadronic Branching Fractions and DD Cross Section at ψ (3770) from CLEO c

C. Bloise LNF-INFN. The KLOE-2 project. XCVI Congresso Nazionale Società Italiana di Fisica settembre 2010

V cb. Determination of. and related results from BABAR. Masahiro Morii, Harvard University on behalf of the BABAR Collaboration

Juliet Lee-Franzini. Laboratori Nazionali di Frascati. Cape Cod, June 2003

The Mystery of Vus from Tau decays. Swagato Banerjee

Absolute D Hadronic Branching Fractions at CLEO-c

b hadron properties and decays (ATLAS)

PoS(KAON13)012. R K Measurement with NA62 at CERN SPS. Giuseppe Ruggiero. CERN

Latest time-dependent CP-violation results from BaBar

Measurement of the e + e - π 0 γ cross section at SND

Standard Model Theory of Neutron Beta Decay

Quark flavour physics

Kaon physics with KLOE

Electroweak interactions of quarks. Benoit Clément, Université Joseph Fourier/LPSC Grenoble

New Measurements of ψ(3770) Resonance Parameters & DD-bar Cross Section at BES-II & CLEO-c

Study of τ Decays to Four-Hadron Final States with Kaons

D 0 -D 0 mixing and CP violation at LHC

CKM Unitary tests with Tau decays

A Summary of Ξ ο Physics at KTEV. Erik J. Ramberg Fermilab 2 December, 2005

A survey of the rare pion and muon decays.

CLEO Results From Υ Decays

Measurements of Leptonic B Decays from BaBar

Uppsala University. October 16, Dark Forces at Accelerators, Frascati, Oct π 0 decays with WASA-at-COSY. Carl-Oscar Gullström

Heavy Quarks and τ. CVC test Michel parameters. Charm Mixing f D s

Physics Highlights from 12 Years at LEP

KLOE CSN1. Catania, 16 September 2002

PRECISION&MEASUREMENTS&

Weak Decays, CKM, Anders Ryd Cornell University

Relative branching ratio measurements of charmless B ± decays to three hadrons

{CLEO-c Charm Leptonic & Semileptonic Decays}

Semileptonic B decays at BABAR

Hadronic Decays of the ω Meson. Uppsala University

Measuring V ub From Exclusive Semileptonic Decays

KEKB collider and Belle detector

PoS(KAON)049. Testing the µ e universality with K ± l ± ν decays

Hyperon physics in NA48

Reconstruction of. events in LHCb. Benjamin Carron

Measurement of the hadronic cross section at KLOE

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron

SUSY-related Lepton and Hadron Flavor Results from Belle Yutaro Sato

from B -Factories A. Oyanguren (IFIC U. Valencia) BaBar Collaboration

Measurement of the CKM Sides at the B-Factories

The π 0 Lifetime Experiment and Future Plans at JLab

Spectroscopy and Decay results from CDF

Evidence for D 0 - D 0 mixing. Marko Starič. J. Stefan Institute, Ljubljana, Slovenia. March XLII Rencontres de Moriond, La Thuile, Italy

Benjamin Carron Mai 3rd, 2004

K form factors and determination of V us from decays

Study of e + e annihilation to hadrons at low energies at BABAR

Recent results on exclusive hadronic cross sections measurements with the BABAR detector

Highlights of top quark measurements in hadronic final states at ATLAS

Particle Detectors A brief introduction with emphasis on high energy physics applications

Muon (g 2) at JPARC. Five to Ten Times Better than E821. B. Lee Roberts. Department of Physics Boston University BOSTON UNIVERSITY

Muon commissioning and Exclusive B production at CMS with the first LHC data

Physics at DA NE and KLOE-2

Belle Hot Topics. Nagoya University Koji Ikado (for the Belle Collaboration) Flavor Physics and CP Violation Conference (FPCP2006) Apr.

Measurements of the Masses, Mixing, and Lifetimes, of B Hadrons at the Tevatron

The W-mass Measurement at CDF

Hadronic Cross Section Measurements at BES-III Sven Schumann Johannes Gutenberg Universität Mainz

Study of the ISR reactions at BaBar!

Precise measurements of the W mass at the Tevatron and indirect constraints on the Higgs mass. Rencontres de Moriond QCD and High Energy Interactions

B D ( ) τν τ decays with hadronic and semileptonic tagging at Belle

Hadronic D Decays and the D Meson Decay Constant with CLEO c

Recent CP violation measurements

Measurements of f D + and f Ds

Latest KLOE-2 results on hadron physics

WG1: KAON PHYSICS. Johan Bijnens Lund University. bijnens

Recent Results from CLEO

Measurement of the Z ττ cross-section in the semileptonic channel in pp collisions at s = 7 TeV with the ATLAS detector

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event

Flavour Physics and CP Violation (FPCP) Philadelphia, Pennsylvania, USA May 16, 2002

Recent results from SND detector

LHC State of the Art and News

Searches for Leptonic Decays of the B-meson at BaBar

K + Physics at J-PARC

W Physics at LEP. 1. WW cross sections and W branching fractions. Corfu Summer Institute on Elementary Particle Physics, Monica Pepe Altarelli

Recent results on CKM/CPV from Belle

Wolfgang Gradl. on behalf of the BABAR collaboration. Tau 2016, Beijing 23 rd September 2016

Transcription:

Unitarity and Universality from Kaons with KLOE Paolo Franzini Roma, 4 April 2008

OUTLINE 1. Htory 2. Introduction 3. KLOE 4. K L, K S, K ± decays 5. V us 2 f + (0) 2 6. K µ2 /K π2 7. Unitarity and universality Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 2

Htory 1947: Rochester and Butler, K 0 π + π, K + π + π 0 1953: Gell-Mann (Nijima) strangeness 1958: Gell-Mann and Feynman Universal V-A interaction. Λ peν 1.6%, Σ ne ν 5.6% 1958: Columbia-Pa: should see 6 events each, none found 1963: Cabibbo, s d mixing. sin θ c =.26 1970: GIM, 2 quark family mixing 1973: Kobayashi and Maskawa, 3 quark family mixing : GWS, the standard model 2004: PDG, V ud 2 + V us 2 + V ub 2 < 1?? Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 3

Standard Model g 2 W + α (U L V CKM γ α D L + ē L γ α ν e L + µ L γ α ν µ L + τ L γ α ν τ L ) + h.c. There just one gauge coupling g, G F = g 2 /(4 2 M 2 W ) The quarks are mixed by a unitary matrix V Quarks and leptons have the same weak charge At the opposite extreme: g q, g e, g µ, g τ V not unitary (But probabilities are conserved!) U = V = u c t, D = d s b V ud V us V ub V ud V us V ub V ud V us V ub Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 4

Decay Width From f J α J α i Γ( S =1)= V us 2 G 2 F 1 (masses) F 2 (emi) F 3 (si). 1. F 1 : kinematics, spinor algebra, phase space, OK 2. F 2 : Cannot turn off electromagnetm. Lengthy but necessary. Few % correction, to 0.1% accuracy 3. F 3 : Strong interactions are hardest to compute, can have large effects, choose best processes, lattice to the rescue! Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 5

F 2 Radiation must be included m(γ) = 0 charge particles radiate. Take for example K S π + π. In the real world the em interaction 2 K gives Γ 1 K for ω 0.... The infinity cancelled by an opposite sign contribution:. 2 K K Γ 2 K K.. ( α Γ 1 + Γ 2 finite but contains a correction of O π log ω 0 m ω 0 finite and experimental acceptance dependent. ). Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 6

Radiation inclusive branching ratios Inclusion (or exclusion) of photons does affect event acceptance. It modern practice to give results fully inclusive of radiation up to the kinematic limit. Th requires correct accounting of radiation in the Monte Carlo detector simulation program. In the KLOE MC simulation, Geanfi, radiation included at the event generation level, event by event. In the following, even if not explicitly stated, BRs are totally inclusive of radiation. BR(K f(γ)) stands for BR(K f, f+γ, 0 < ω < ω max ) (I will also just use BR(K f)) Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 7

F 3 SI Hadrons vs Quarks Nuclear β-decay. Look at 0 + 0 + transitions. No axial current. CVC helps with nuclear matrix elements. S = 1 decays. Corrections to f ūγ α s i appear only at 2 nd order in m s m d. A-G theorem. Kaon semileptonic decays. K πlν 0 0. Only vector part of current contributes to π ū L γ α s L K π ūγ α s K = f + (t)(p + p) α + f (t)(p p) α Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 8

¼ p K P ` W k q P p k k ` e, ¹ Vector Current protected k 0 ( º π J α K =f + (0) (P + p) α f + (t)+ ( (P p) α f 0 (t) f + (t) ) ) t 0 = M 2 m 2 Form factor because K, π are not point like Scalar and vector FFs equal at t=0 (by construction) Factor out f + (0). f + (0) < 1 because K π f + (0) 1 1 (0.04) small SU(3) breaking f + (0) = f 0 (0) = 1 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 9

Decay Width Γ(K l3(γ) ) = C2 K G2 F M K 5 768 π 3 S EW V us 2 f + (0) 2 I Kl ( 1 + δ SU(2) ) 192 128 K + δkl EM CK 2 = 1(1/2) for K0 (K ± ); S EW = 1.0232(3), EW corr, Sirlin Measure: τ, BR, f +, f 0 Compute: χpt, Quark M, Lattice Define f + (0) as f K0 π ± + (0) δ SU(2) K (%) δkl EM(%) Ke3 0 0 +0.57(15) K e3 + 2.36(22) +0.08(15) Kµ3 0 0 +0.80(15) K + µ3 2.36(22) +0.05(15) Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 10

Phase space integral, K e3 ρ(e e, E ν ) [ M 2 G 2 CK 2 M 4 E e M spins I Kl ρ(e e E ν ) de e de ν zm E ν M + k k ] M 2 Γ = G2 CK 2 M K 5 xm(z) 768 π 3 dz f(t) 2 24 ((z + x 1)(1 x) α) dx zm xm(z) }{{} I Kl With 768 in the denominator, f(t)=1, all final state masses zero: I Kl = 1.0 768 corresponds to 192 in muon decay rate. I Kl dimensionless. x = 2E e M, y = 2E ν M, z = 2E π M, α = m M End of introduction Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 11

DAΦNE An e + e collider operated (mostly) at W = M φ e + e φ { KS + K L 34.0% K + + K 49.3% Tagged, monochromatic, pure K S, K L, K +, K beams BR(K S πlν) = (7.04 + 4.69) 10 4 BR(K ± πlν) = (4.98 + 3.32) 10 2 BR(K L πlν) = (4.06 + 2.71) 10 1 difficult so so best e µ Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 12

YOKE KLOE S.C. COIL Barrel EMC Cryostat DRIFT CHAMBER QCal End Cap EMC Pole Piece 7 m Paolo Franzini 6 m Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 13

Magnet SC Coil, B=0.6 T YOKE S.C. COIL Barrel EMC Cryostat DRIFT CHAMBER QCal End Cap EMC Pole Piece 7 m Paolo Franzini 6 m Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 14

Magnet SC Coil, B=0.6 T EM Calor. Pb scint fiber 4880 pm, 2440 cells YOKE S.C. COIL Barrel EMC DRIFT CHAMBER QCal Cryostat End Cap EMC Pole Piece 7 m Paolo Franzini 6 m Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 15

Magnet SC Coil, B=0.6 T EM Calor. Pb scint fiber 4880 pm, 2440 cells Drift Ch. 12582 sense wires 52140 tot wires Carbon fiber walls YOKE S.C. COIL Barrel EMC DRIFT CHAMBER QCal Cryostat End Cap EMC Pole Piece 7 m Paolo Franzini 6 m Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 16

Magnet SC Coil, B=0.6 T EM Calor. Pb scint fiber 4880 pm, 2440 cells Drift Ch. 12582 sense wires 52140 tot wires Carbon fiber walls YOKE S.C. COIL Barrel EMC DRIFT CHAMBER QCal Cryostat End Cap EMC Pole Piece 7 m Al-Be beam pipe r=10 cm, 0.5 mm thick Paolo Franzini 6 m Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 17

σ E /E =5.7%/ E (GeV) σ t = 54/ E (GeV) 100-150 ps Drift chamber EM Calorimeter σ(p )/p = 0.4% σ x,y =150 µm; σ z =2 mm Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 18

KLOE precion measurements M(K 0 ) = 497, 583 ± 5 ± 20 kev M(η) = 547, 874 ± 7 ± 29 kev Using M(φ) measurements based on electron anomaly a e =0.0011596521859±0.0000000000038, Novosibirsk KLOE calibration KLOE continuously calibrated with data Time, energy and position scales are calibrated every 1-2 hours Machine energy, collion point, p(φ) in lab Together with L and Ldt, all provided to DAΦNE Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 19

Analys Prefilter. Reconstruction 2 hours after data taking Initial classification Massive Monte Carlo production. MC includes run by run background simulation Tracking efficiency measured from data Photon efficiency measured from data Signal shapes and backgrounds from control samples Continuous improvement of MC with feedback from physics analys Particle ID by time of flight Particle ID by shape of energy release in EMC cells Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 20

Measuring BRs We only measure absolute BR, i.e. Γ i /Γ, not ratios (Γ i /Γ j ) of partial rates. We have three ways to do it: 1. Measure single BR s 2. Measure (almost) all BR 3. Measure all partial rates: BRs & Γ = 1/τ We only use tagged kaons. Trigger efficiency must not depend on decay mode of tagged kaon. For every event, we verify the trigger was due to the tagging kaon. There are differences between K S, K L and K ± : 1. 1 vs 2 charged decay products 2. Tag by 1 or 2 body decays 3. Tag by time of flight Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 21

The K S beam First level, crude K S tag by K L TOF 50% of the K L -mesons reach the calorimeter where most interact. Since β(k 0 ) 0.2, we identify kaon interactions by TOF. 15000 10000 5000 ¼ 0 ¼ 0 ¼ + ¼ K L interacting in the calorimeter give an ideal K S tag, almost independent of 1 RF bucket * ( K ) L 0.20 0.25 0.30 K S decay mode. The value of T 0 here obtained from the first particle to reach the calorimeter. π, µ, γ or e Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 22

K S π ± e ν 300 200 100 =0.2133 =0.0039 or t =700 ps ( K L ) 0.20 0.22 0.24 W(DA NE)=1 MeV gives =0.004 After event reconstruction very clean signal tags the presence of K S. Search for two track decays near IP. Reject K S π + π. Use TOF difference for two tracks taken as π e or e π. Provides electron ID and charge of lepton. Use E ms p ms to olate K S, e3 events. Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 23

K S πeν, 2005 800 Evts/1 MeV e 800 Evts/1 MeV e 600 Data Signal - MC fit Bckgnd - MC fit 600 Data Signal - MC fit Bckgnd - MC fit 400 400 200 Ep ms (MeV) -40-20 0 20 40 60 80 200 Ep ms (MeV) -40-20 0 20 40 60 80 13,000 signal events BR(K S πeν)=(7.046 ± 0.091) 10 4 V us to 0.7% 40 30 20 10 CMD-2 '99 Events DE, MeV 50 0 50 100 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 24

We know (KLOE, PDG, etc) Dominant K L decay modes Σ B = BR(K L e3 ) + BR(K Lµ3 ) + BR(K L 3π 0 ) + BR(K L π + π π 0 ) = 1 0.0034(±0.00004) We assume We measure: τ(k L ) = 51.7 ns Σ B = 1.0104 0.0034 GOOD! We can solve for : { 4 BRs K L lifetime Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 25

A step at a time Detect K S π + π, tagged K L beam Find: a) K L 2 charged particles: b) K L 3π 0 Classify a) as eπν, µπν, π + π π 0, π + π Determine tag bias corrections Determine FV acceptance & all other efficiencies Count in FV. FV: 35 < x, y < 150 cm, z < 120 cm y x z All the above requires knowledge of τ. Use old value τ 0 =51.7 ns. In KLOE, ) A FV = A 0 FV (1 + 0.0128 ns 1 (τ 0 τ) Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 26

Solve for BRs and lifetime BR(K L e3 ) = 0.4009 ± 0.0015 BR(K L µ3 ) = 0.2699 ± 0.0014 BR(K L 3π 0 ) = 0.1996 ± 0.0020 BR(K L + 0 ) = 0.1261 ± 0.0011 There are of course correlations τ(k L ) = 50.72 ± 0.37 ns 0.25 0.56 0.07 0.25 0.43 0.20 0.33 0.39 0.21 0.38 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 27

K L two track events 8000 6000 Events 0.5 MeV Ke 3 K 3 Data For K L π ± l ν: E ms 0 p ms 0 m ν =0 =E ms p ms =0 4000 µπ =smallest of µ + π, π + µ 2000 Fit to MC shapes Count, BRs 14 sub-samples -150-100 -50 0 50 100 (MeV) Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 28

10 5 Events 0.5 MeV Data Select electrons 10 4 K e3 Ke3 + E MeV 10 3 K 3 10 2 10 e (MeV) 200 150 100 50 0 50 100 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 29

Select muons 10 5 Events/0.5 MeV Data 10 4 K e3 K 3 10 3 10 2 10 (MeV) -150-100 -50 0 50 100 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 30

K L π 0 π 0 π 0 Count tagged K L decaying to 3γ, 4γ, 5γ, 6γ,7γ Efficiency O(100%) MC corrections Background O(0.001) Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 31

Time dependence of K L π 0 π 0 π 0 3 10 counts/0.5 ns 200 100 K L million ev fit region» 0.4 L τ(k L ) = 50.92 ± 0.30 ns t*( K) (ns) 10 20 30 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 32

All KLOE K L results Param. Value Correlation coefficients BR(K L e3 ) 0.4008(15) BR(K L µ3 ) 0.2699(14) 0.31 BR(3π 0 ) 0.1996(20) 0.55 0.41 BR( + 0 ) 0.1261(11) 0.01 0.14 0.47 BR(π + π ) 1.96(2) 10 3 0.15 0.50 0.21 0.07 BR(π 0 π 0 ) 8.49(9) 10 4 0.15 0.48 0.20 0.07 0.97 BR(γγ) 5.57(8) 10 4 0.37 0.28 0.68 0.32 0.14 0.13 τ L 50.84(23) ns 0.16 0.22 0.14 0.26 0.11 0.11 0.09 We can do it! When PDG does it, combining inconstent results from different experiments it can be a daster!!! Till 06 they could not input correlations. Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 33

PDG Example 1. BR(K 3π 0 ). NA31 95: 0.2105±.0028. PDG 04: 0.2105 ±0.0021. 08: 0.1951±0.0008. 5.3σ to 6.8σ off! 2. 3π 0 /K e3 NA31 95 and PDG 04 6.4σ to 7.6σ off! 3. BR(K ± π + π 0 ). Chiang 72: 0.2118±0.0028. PDG 04: 0.2113±0.0014. 08:.2064±.0008. 1.9σ to 3.2σ off! BR( K ¼2 + ) BR( K e3 + ) 4. PDG 04 PDG 06 End 07 PDG 04 PDG 06 End 07 0.195 0.205 0.215 0.045 0.050 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 34

PDG masses 5. η mass. The PDG procedure should give m(η)=547.53±0.26 MeV, CL=10 15. They include 3 old measurements which should give m(η)=547.51±0.13 MeV, CL=3 10 13. They give m(η)= 547.51±0.18 MeV, CL=0.001??? 6. K + mass. PDG procedure m(k + )=493.677±0.012 from 6 values. From only last two m(k + )=493.686±0.019. They give 493.677±0.013. Also CL 0.00035 (2.1 10 6 ), they give CL=0.001. Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 35

K ± decays A K ± e3 decay ¹ e K K Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 36

K ± l3 decays Tag Decay K + µ + ν K π 0 e ν K + π + π 0 K π 0 µ ν K µ ν K + π 0 e + ν K π π 0 K + π 0 µ + ν Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 37

Tagging decays and K ± µν decays 10 5 10 4 10 3 10 2 Ev/MeV ` p* (MeV/c) Compute CM momentum using m(π). The µν decay peak dtorted but quite recognizable for tagging. We also get BR(K µν(γ)) and BR(K ππ 0 (γ)) Note the radiative tail! 160 180 200 220 240 260 280 300 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 38

. K µν(γ) BR 10 5 10 4 Ev/MeV/c All background decays, contain a π 0. The background shape obtained from a control sample 10 3 10 2 p* (MeV/c) 220 260 300 340 380 K µ2 events are counted only in the shaded area, after background subtraction, 2%. BR(K + µ + ν(γ)) = 0.6366±0.0009±0.0015. Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 39

300 k 200 k No π 0 requirement! Counts/MeV ¼ + ¼ Data Fit K ± π + π 0 decays Measuring the K π detection efficiency inner DC wall E M C K D 100 k p*( ¼ ) (MeV) ¹ K ¼ 180 200 220 240 260 280 d BR(K + π + π 0 (γ)) = 0.2065 ± 0.0005 stat ± 0.0008 syst Average of K µ2 and K π2 tags. Normalization for many K± BRs Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 40

K ± l3 decays Counts / 14 MeV k k K e3 K 3 Data Fit to MC shapes K µν and K π ± π 0 tag. Verify π 0 2γ. Lepton mass from p and TOF. M 2 (MeV 2 ) Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 41

K ± l ± π 0 ν BRs BR \ Tag K + µ2 K + π2 K µ2 K π2 BR(K e3 ) 0.0495(7) 0.0493(10) 0.0497(8) 0.0502(10) BR(K µ3 ) 0.0322(6) 0.0322(9) 0.0323(5) 0.0327(9) 8 measurements, very good constency: BR(K ± e ± π 0 ν) = 0.0497 ± 0.0005 BR(K ± µ ± π 0 ν) = 0.0323 ± 0.0004 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 42

All KLOE K ± results Constrained fit: BR(K ± µ ± ν) = 0.63765 ± 0.0013 BR(K ± π ± π 0 ) = 0.20680 ± 0.0009 BR(K ± π ± π + π ) = 0.05534 ± 0.0009 (input PDG 04) BR(K ± e ± π 0 ν) = 0.04978 ± 0.0005 BR(K ± µ ± π 0 ν) = 0.03242 ± 0.0004 BR(K ± π ± π 0 π 0 ) = 0.01765 ± 0.0002 sum = 1.0 χ 2 /dof = 0.78/1, CL=38% Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 43

Must check τ(k ± ) 12.385 0.025 ns Koptev, U 95 Koptev, Cu 95 Ott 71 Lobkowitz 69 Fitch 65B 12.2 12.4 ns 12.6 δτ=0.0119 ns 0.025 ns Better remeasure! Ott et al.: error 0.032, not 0.016 Koptev: τ =12.422±0.048 Lobkowicz way off τ = 12.409 ± 0.022 ns Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 44

KLOE τ(k ± ) 120 k 100 k 80 k 60 k 40 k 20 k events/ns K l Fit range fit data 70 k 60 k 50 k 40 k 30 k 20 k 10 k events/ns K t Fit range fit data 4 measurement of τ 140 k 120 k 100k 80 k 60 k 40 k 20 k events/ns 20 30 t * (ns) 40 K l Fit range fit data 10 20 30 40t * (ns) 50 80 k events/ns 70 k K t 60 k fit data 50 k 40 k 30 k 20 k 10 k Fit range Constent Can average Use only our result 20 30 t* (ns) 40 10 20 30 40 t* (ns) 50 τ(k ± ) = 12.347 ± 0.030, 0.25% τ(k + )/τ(k ± ) = 1.004 ± 0.004 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 45

The form factors f +,0 (t)?? Phase Space Integrals I Kl t = (P p) 2 = M 2 + m 2 2M E π, 0 < t < M 2 + m 2 for K e3 No need to fit Dalitz Plot. All info in E π spectrum. 5 4 3 d /dz 2 (FF ) g( z) 5 4 3 d /dz g( z ) f(t( z)) 2 1 f(t( z)) 2 z 2 1 g( z) z 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0 z = 2 E π M Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 46

FF: quadratic, pole, dp. f + (t) = 1 + λ t ( ) m + λ t 2 or f + (t) = M V 2 2 m t MV 2 λ, λ are 95% correlated, errors 3-4 2 1 0 from fit from M V 22 24 26 28 λ = (m/m V ) 2, λ = 2 λ 2 Pole and quad give different I, KTeV, 04 KTeV unlucky, but should have understood. Pole was right!! Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 47

Common practice Quadratic FF + and linear FF 0 : three parameters λ +, λ +, λ 0 1.79 2 3.51 1.98 Th systematically 3.51 3.15 2 4.04 1 1.98 4.04 1.37 2 N over-estimates λ 0 by 20%. Errors look acceptable. λ 0 λ 0 λ + λ + 63.9 2 1200 923 197 1200 18.8 2 272 59 923 272 14.8 2 49 197 59 48 3.4 2 N 1 Errors are unacceptable, correlations reach -99.96%!! NEED HELP! Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 48

Dpersive approach Use a dpersion relation for log( f + (t)), twice subtracted at t=0. f + (t) = exp [ (t/m 2 )(λ + + H(t)) ]. λ + slope at t=0 to be measured. H(t) obtained from Kπ p-wave phase, dominated by K (892). f + expands to t f + = 1 + λ + m 2 + λ2 + + 0.00058 ( ) t 2 2 m 2 + λ 3 + + 3 0.00058 λ ( + + 0.00003 t 6 The Callan-Treiman relation relates the scalar FF at t = Kπ to the ratio of the pseudoscalar decay constants f K /f π. f 0 ( Kπ ) = f K 1 f π f + (0) + CT where Kπ = M 2 m 2, the so called Callan-Treiman point, and CT a correction which at NLO in χpt 3.5 10 3. Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 49 m 2 ) 3

Use dpersion relation subtracted at t=0 and t = Kπ. Use s- wave Kπ phases to compute the equivalent function G(t). f 0 (t) expands to t f + = 1 + λ + m 2 + λ2 + + 0.00042 ( ) t 2 2 m 2 + λ 3 + + 3 0.00042 λ ( + + 0.000027 t 6 (Use dpersion relations and χpt: Stern et al.. Also Pich et al..) FFs are power series in t but with only one free parameter each! m 2 Fit for λ +,0 and get phase space integrals ) 3 I(K 0 e3 ) I(K0 µ3 ) I(K+ e3 ) I(K+ µ3 ) 0.6191(14) 0.4105(18) 0.6365(14) 0.4224(18) 0.2 to 0.4 %. 1/3 of KTeV error. Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 50

[Γ] f(0) V us We are almost there. Let us begin with f(0) V us. f(0), by definition, belongs to K 0 π ±. If we know the I-spin corrections and the long dtance EM corrections all decays must give the same value for f(0) V us. Th in fact a check of the δ... estimates and of the experiment. We find Channel f(0) V us Correlation coefficients K Le3 0.2155(7) K Lµ3 0.2167(9) 0.28 K Se3 0.2153(14) 0.16 0.08 K e3 ± 0.2152(13) 0.07 0.01 0.04 K µ3 ± 0.2132(15) 0.01 0.18 0.01 0.67 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 51

f(0) V us f + (0) V us K Le3 K K L 3 Se3 K e3 K 3 = 0.2157±0.0006 χ 2 /ndf =7.0/4 (CL=13%) SU(2) corrections are verified to 1.1 σ. 0.213 0.215 0.217 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 52

Lepton Universality From: R µe [f(0)v us] 2 µ3 [f(0)v us ] 2 e3 = Γ µ3 Γ e3 I e3 (1 + δ e ) 2 I µ3 (1 + δ µ ) 2 [Γ] R µe = g2 e g 2 µ = 1.000 ± 0.008 [W α J α ] Competitive with pure leptonic processes, τ decays (R µe ) τ = 1.000 ± 0.004 Also with π lν results (R µe ) π = 1.0042 ± 0.0033 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 53

f(0) and V us The accepted value was f(0) = 0.961±0.008, Roos & Leutwyler, 1984. Recently Lattice results have become convicing. We take f(0) = 0.9644 ± 0.0049, RBC and UKQCD, 2007. Then V us = 0.2237 ± 0.0013 V us 2 = 0.05002 ± 0.00057 0 + 0 + and V ud 2 V ud 2 = 0.9490 ± 0.0005 1 V us 2 V ud 2 = 0.0009 ± 0.0008 ( 1.1σ) But we can do better Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 54

K µν/π µν Γ(K µ2(γ) ) Γ(π µ2(γ) ) = V us 2 V ud 2 f 2 K f 2 π ( m K 1 m 2 µ /m 2 ) 2 K ( m π 1 m 2 µ /m 2 ) 2 (0.9930 ± 0.0035) π Cancellations in f 2 K /f 2 π. From lattice Cancellations in rad. cor. From Marciano. KLOE V us /V ud f K /f π 2 = 0.0765 ± 0.0005 HPQCD/UKQCD f K /f π =1.189±0.007 V us /V ud 2 = 0.0541 ± 0.0007 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 55

CKM Unitarity V us 0.052 0.051 K ¹º ¼ ¹º 0.050 0.049 K ¼`º 1¾ contour -decay unitarity 0.948 0.949 0.950 V ud Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 56

From the fit 1 V us 2 V ud 2 = 0.0004 ± 0.0007 ( 0.6σ) V us = 0.2249 ± 0.0010 V ud = 0.97417 ± 0.00026 Fit with unitarity as constraint V us = 0.2253 ± 0.0007 V ud = 1 V us 2 = 0.97429 ± 0.00017. θ C = 13.02 ± 0.06 Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 57

tan β M(Higgs ± ) tan( ) 80 60 R l23 = V us (K µ2 ) V us (K l3 ) V ud(0 + 0 + ) V ud (π µ2 ) = 1 in the SM. With charged Higgs exchange R l23 = 40 20 95% CL from B 95% CL from K Charged Higgs mass (GeV) 100 200 300 400 500 ( ) 1 m2 K + m 2 1 m2 π + H + m 2 K + tan2 β 1 + ɛ 0 tan β ɛ 0 1/(16π 2 ) Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 58

Conclusions Unitarity verified at the 0.1% level 1 V us 2 V ud 2 = 0.0004 ± 0.0007 Muons, electrons and quarks carry the same weak charge to better than 0.5% Kaon properties limit the parameter space for some new physics models Roma, 4 April 2008 Paolo Franzini - Kaons and Kloe 59