- A Bayesian approach

Similar documents
Dark Matter A Particle Theorist s Perspective Lecture 2

A Bayesian approach to supersymmetry phenomenology

Signals from Dark Matter Indirect Detection

Dark matter in split extended supersymmetry

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo

Neutralino Dark Matter as the Source of the WMAP Haze

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G.

Global SUSY Fits with IceCube

Use of event-level IceCube data in SUSY scans

The Egret Excess, an Example of Combining Tools

Search for exotic process with space experiments

A profile likelihood analysis of the CMSSM with Genetic Algorithms

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Dark Matter in the Universe

Dark Matter WIMP and SuperWIMP

Neutrinos and DM (Galactic)

Direct Detection Rates of Neutralino WIMP in MSSM

SUSY scans and dark matter

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

LHC Impact on DM searches

Excess of EGRET Galactic Gamma Ray Data interpreted as Dark Matter Annihilation

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis

Wino dark matter breaks the siege

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics

Gravitino LSP as Dark Matter in the Constrained MSSM

Indirect constraints on the (C)MSSM parameter space

(Neutrino indirect) detection of neutralino dark matter in (non) universals SUSY GUT models

Neutrino bounds on dark matter. Alejandro Ibarra Technische Universität München

DarkSUSY. Joakim Edsjö With Torsten Bringmann, Paolo Gondolo, Lars Bergström, Piero Ullio and Gintaras Duda. APS Meeting

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

MACRO Atmospheric Neutrinos

Ingredients to this analysis

Dark matter and LHC: complementarities and limitations

Latest Results on Dark Matter and New Physics Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration

from Dark Matter Annihilation in the Sun

Dark Matter Implications for SUSY

Dark matter, supersymmetry and global fits

SUSY AND COSMOLOGY. Jonathan Feng UC Irvine. SLAC Summer Institute 5-6 August 2003

EGRET excess of diffuse Galactic Gamma Rays interpreted as Dark Matter Annihilation

Conservative Constraints on Dark Matter Self Annihilation Rate

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

Enhancement of Antimatter Signals from Dark Matter Annihilation

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT

COSMOLOGY AT COLLIDERS

Astroparticle Physics and the LC

Andrea Albert (The Ohio State University) on behalf of The Fermi LAT Collaboration. HEP Seminar University of Virginia 12/05/12

Indirect Dark Matter Detection

Structure of Dark Matter Halos

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation

Antiproton Limits on Decaying Gravitino Dark Matter

Supersymmetry at the ILC

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology

Bad Honnef,

Signatures of clumpy dark matter in the global 21 cm background signal D.T. Cumberland, M. Lattanzi, and J.Silk arxiv:

Introducing SModelS - with an application to light neutralino DM

Prospects and Blind Spots for Neutralino Dark Matter

Indirect dark matter detection and the Galactic Center GeV Excess

Impact of substructures on predictions of dark matter annihilation signals

Cosmic Ray Anomalies from the MSSM?

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

Indirect Search for Dark Matter with AMS-02

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

Measuring Dark Matter Properties with High-Energy Colliders

The Story of Wino Dark matter

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

Constraints on dark matter annihilation cross section with the Fornax cluster

Search for Dark Matter in the Gamma-ray Sky

Cosmic ray electrons from here and there (the Galactic scale)

Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe. Outline (see astro-ph/ )

arxiv:hep-ph/ v2 9 Sep 2005

What is known about Dark Matter?

Search for Dark Matter in the mono-x* final states with ATLAS

Searching for spectral features in the g-ray sky. Alejandro Ibarra Technische Universität München

Dark Matter Distributions of the Milky Way Satellites and Implications for Indirect Detection

Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky

Confinement of CR in Dark Matter relic clumps

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

PAMELA from Dark Matter Annihilations to Vector Leptons

Where is SUSY? Institut für Experimentelle Kernphysik

Astroparticle Physics at Colliders

Testing a DM explanation of the positron excess with the Inverse Compton scattering

LHC and the Cosmos Dark Matter Searches. Dark Matter Reconstruction

Carsten Rott. mps. ohio-state. edu. (for the IceCube Collaboration)

Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission

Probing the nature of Dark matter with radio astronomy. Céline Boehm

High energy events in IceCube: hints of decaying leptophilic Dark Matter?

Neutrino Signals from Dark Matter Decay

Surprises in (Inelastic) Dark Matter

Shedding light on Dark Matter from accelerator physics

Dark Matter Electron Anisotropy: A universal upper limit

Chapter 12. Dark Matter

Dark Matter Experiments and Searches

THE STATUS OF NEUTRALINO DARK MATTER

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL

MICROPHYSICS AND THE DARK UNIVERSE

Dark matter searches with GLAST

SUSY Candidates. Talk outline. Ben Allanach (University of Cambridge) SUSY dark matter: generalities Neutralino Gravitino Sneutrino Axino

Transcription:

DM in the Constrained MSSM - A Bayesian approach Leszek Roszkowski CERN and Astro Particle Theory and Cosmology Group, Sheffield, England with Roberto Ruiz de Austri (Autonoma Madrid), Joe Silk and Roberto Trotta (Oxford) hep-ph/0602028 JHEP06, hep-ph/0611173 JHEP07, arxiv:0705.2012 and arxiv:0707.0622 SuperBayes package, superbayes.org L. Roszkowski, COSMO-07, 22/08/2007 p.1

Outline the Constrained MSSM (CMSSM) limitations of fixed-grid scans Bayesian Analysis of the CMSSM fits of observables mean quality of fit and the CMSSM direct detection of dark matter indirect detection of dark matter summary L. Roszkowski, COSMO-07, 22/08/2007 p.2

Constrained MSSM...aka msugra L. Roszkowski, COSMO-07, 22/08/2007 p.3

Constrained MSSM...aka msugra At M GUT 2 10 16 GeV: gauginos M 1 = M 2 = m eg = m 1/2 (c.f. MSSM) scalars m 2 eq i = me 2 li = m 2 H b = m 2 H t = m 2 0 3 linear soft terms A b = A t = A 0 L. Roszkowski, COSMO-07, 22/08/2007 p.3

Constrained MSSM...aka msugra At M GUT 2 10 16 GeV: gauginos M 1 = M 2 = m eg = m 1/2 (c.f. MSSM) scalars m 2 eq i = me 2 li = m 2 H b = m 2 H t = m 2 0 3 linear soft terms A b = A t = A 0 radiative EWSB µ 2 = m 2 H b +Σ (1) b m 2 H t +Σ (1) t tan 2 β 1 tan 2 β m2 Z 2 L. Roszkowski, COSMO-07, 22/08/2007 p.3

Constrained MSSM...aka msugra At M GUT 2 10 16 GeV: gauginos M 1 = M 2 = m eg = m 1/2 (c.f. MSSM) scalars m 2 eq i = me 2 li = m 2 H b = m 2 H t = m 2 0 3 linear soft terms A b = A t = A 0 radiative EWSB µ 2 = m 2 H b +Σ (1) b m 2 H t +Σ (1) t tan 2 β 1 tan 2 β m2 Z 2 five independent parameters: tan β, m 1/2, m 0, A 0, sgn(µ) L. Roszkowski, COSMO-07, 22/08/2007 p.3

Constrained MSSM...aka msugra At M GUT 2 10 16 GeV: gauginos M 1 = M 2 = m eg = m 1/2 (c.f. MSSM) scalars m 2 eq i = me 2 li = m 2 H b = m 2 H t = m 2 0 3 linear soft terms A b = A t = A 0 radiative EWSB µ 2 = m 2 H b +Σ (1) b m 2 H t +Σ (1) t tan 2 β 1 tan 2 β m2 Z 2 five independent parameters: tan β, m 1/2, m 0, A 0, sgn(µ) mass spectra at m Z : run RGEs, 2 loop for g.c. and Y.c, 1-loop for masses some important quantities (µ, m A,...) very sensitive to procedure of computing EWSB & minimizing V H we use SoftSusy and FeynHiggs L. Roszkowski, COSMO-07, 22/08/2007 p.3

CMSSM: allowed regions usual fixed-grid scans L. Roszkowski, COSMO-07, 22/08/2007 p.4

CMSSM: allowed regions tan β < 45 usual fixed-grid scans L. Roszkowski, COSMO-07, 22/08/2007 p.4

CMSSM: allowed regions usual fixed-grid scans tan β < 45 tan β > 45 L. Roszkowski, COSMO-07, 22/08/2007 p.4

CMSSM: allowed regions usual fixed-grid scans tan β < 45 tan β > 45 fixed-grid scans, assuming rigid 1σ or 2σ experimental ranges green: consistent with WMAP-3yr (at 2σ) all the rest excluded by LEP, BR( B X s γ), Ω χ h 2, EWSB, charged LSP,... L. Roszkowski, COSMO-07, 22/08/2007 p.4

Instead, allowed is this: L. Roszkowski, COSMO-07, 22/08/2007 p.5

Instead, allowed is this: Bayesian pdf maps 4 3.5 3 Ruiz, Trotta & Roszkowski (2006) m 0 2.5 2 1.5 1 0.5 0.5 1 1.5 2 m 1/2 L. Roszkowski, COSMO-07, 22/08/2007 p.5

Instead, allowed is this: Bayesian pdf maps 4 Ruiz, Trotta & Roszkowski (2006) fixed-grid scans 3.5 3 m 0 2.5 2 1.5 1 0.5 0.5 1 1.5 2 m 1/2 L. Roszkowski, COSMO-07, 22/08/2007 p.5

Instead, allowed is this: Bayesian pdf maps 4 Ruiz, Trotta & Roszkowski (2006) fixed-grid scans 3.5 3 m 0 2.5 2 1.5 1 0.5 0.5 1 1.5 2 m 1/2 Note: In both an outdated SM value of BR( B X s γ) used. See below. L. Roszkowski, COSMO-07, 22/08/2007 p.5

Bayesian Analysis of the CMSSM Apply to the CMSSM: L. Roszkowski, COSMO-07, 22/08/2007 p.6

Bayesian Analysis of the CMSSM Apply to the CMSSM: m = (θ, ψ): model s all relevant parameters L. Roszkowski, COSMO-07, 22/08/2007 p.6

Bayesian Analysis of the CMSSM Apply to the CMSSM: m = (θ, ψ): model s all relevant parameters θ: CMSSM parameters: m 1/2, m 0, A 0, tan β ψ: relevant SM parameters nuisance parameters L. Roszkowski, COSMO-07, 22/08/2007 p.6

Bayesian Analysis of the CMSSM Apply to the CMSSM: m = (θ, ψ): model s all relevant parameters θ: CMSSM parameters: m 1/2, m 0, A 0, tan β ψ: relevant SM parameters nuisance parameters ξ = (ξ 1, ξ 2,..., ξ m ): set of derived variables (observables): ξ(m) L. Roszkowski, COSMO-07, 22/08/2007 p.6

Bayesian Analysis of the CMSSM Apply to the CMSSM: m = (θ, ψ): model s all relevant parameters θ: CMSSM parameters: m 1/2, m 0, A 0, tan β ψ: relevant SM parameters nuisance parameters ξ = (ξ 1, ξ 2,..., ξ m ): set of derived variables (observables): ξ(m) d: data L. Roszkowski, COSMO-07, 22/08/2007 p.6

Bayesian Analysis of the CMSSM Apply to the CMSSM: m = (θ, ψ): model s all relevant parameters θ: CMSSM parameters: m 1/2, m 0, A 0, tan β ψ: relevant SM parameters nuisance parameters ξ = (ξ 1, ξ 2,..., ξ m ): set of derived variables (observables): ξ(m) d: data Bayes theorem: posterior pdf p(θ, ψ d) = p(d ξ)π(θ,ψ) p(d) p(d ξ): likelihood π(θ, ψ): prior pdf p(d): evidence (normalization factor) posterior = likelihood prior normalization factor L. Roszkowski, COSMO-07, 22/08/2007 p.6

Bayesian Analysis of the CMSSM Apply to the CMSSM: m = (θ, ψ): model s all relevant parameters θ: CMSSM parameters: m 1/2, m 0, A 0, tan β ψ: relevant SM parameters nuisance parameters ξ = (ξ 1, ξ 2,..., ξ m ): set of derived variables (observables): ξ(m) d: data Bayes theorem: posterior pdf p(θ, ψ d) = p(d ξ)π(θ,ψ) p(d) p(d ξ): likelihood π(θ, ψ): prior pdf p(d): evidence (normalization factor) posterior = likelihood prior normalization factor usually marginalize over SM (nuisance) parameters ψ p(θ d) L. Roszkowski, COSMO-07, 22/08/2007 p.6

Bayesian Analysis of the CMSSM θ = (m 0, m 1/2, A 0, tan β): CMSSM parameters ψ = (M t, m b (m b ) MS, α em (M Z ) MS, α MS s ): SM (nuisance) parameters priors assume flat distributions and ranges as: flat priors: CMSSM parameters 50 GeV < m 0 < 4 TeV 50 GeV < m 1/2 < 4 TeV A 0 < 7 TeV 2 < tan β < 62 flat priors: SM (nuisance) parameters 160 GeV < M t < 190 GeV 4 GeV < m b (m b ) MS < 5 GeV 0.10 < α MS s < 0.13 127.5 < 1/α em (M Z ) MS < 128.5 vary all 8 (CMSSM+SM) parameters simultaneously, scan with MCMC include all relevant theoretical and experimental errors L. Roszkowski, COSMO-07, 22/08/2007 p.7

Experimental Measurements (assume Gaussian distributions) L. Roszkowski, COSMO-07, 22/08/2007 p.8

Experimental Measurements SM (nuisance) parameter Mean Error µ σ (expt) M t 171.4 GeV 2.1 GeV m b (m b ) MS 4.20 GeV 0.07 GeV α MS s 0.1176 0.002 1/α em (M Z ) MS 127.918 0.018 (assume Gaussian distributions) L. Roszkowski, COSMO-07, 22/08/2007 p.8

Experimental Measurements (assume Gaussian distributions) SM (nuisance) parameter Mean Error µ σ (expt) M t 171.4 GeV 2.1 GeV m b (m b ) MS 4.20 GeV 0.07 GeV α MS s 0.1176 0.002 1/α em (M Z ) MS 127.918 0.018 new M W = 80.413 ± 0.048 GeV (Jan 07, not yet included) new M t = 170.9 ± 1.8 GeV (Mar 07, not yet included) BR( B X s γ) 10 4 : new SM: 3.15 ± 0.23 (Misiak & Steinhauser, Sept 06) used here Derived observable Mean Errors µ σ (expt) τ (th) M W 80.392 GeV 29 MeV 15 MeV sin 2 θ eff 0.23153 16 10 5 15 10 5 δa SUSY µ 10 10 28 8.1 1 BR( B X s γ) 10 4 3.55 0.26 0.21 M Bs 17.33 0.12 4.8 Ω χ h 2 0.119 0.009 0.1 Ω χ h 2 take as precisely known: M Z = 91.1876(21) GeV, G F = 1.16637(1) 10 5 GeV 2 L. Roszkowski, COSMO-07, 22/08/2007 p.8

Experimental Limits Derived observable upper/lower Constraints limit ξ lim τ (theor.) BR(B s µ + µ ) UL 1.5 10 7 14% m h LL 114.4 GeV (91.0 GeV) 3 GeV ζ 2 h g2 ZZh /g2 ZZH SM UL f(m h ) 3% m χ LL 50 GeV 5% m χ ± 1 LL 103.5 GeV (92.4 GeV) 5% mẽr LL 100 GeV (73 GeV) 5% m µr LL 95 GeV (73 GeV) 5% m τ1 LL 87 GeV (73 GeV) 5% m ν LL 94 GeV (43 GeV) 5% m t 1 LL 95 GeV (65 GeV) 5% m b1 LL 95 GeV (59 GeV) 5% m q LL 318 GeV 5% m g LL 233 GeV 5% (σ SI p UL WIMP mass dependent 100%) Note: DM direct detection σ SI p not applied due to astroph l uncertainties (eg, local DM density) L. Roszkowski, COSMO-07, 22/08/2007 p.9

The Likelihood: 1-dim case Take a single observable ξ(m) that has been measured (e.g., M W ) L. Roszkowski, COSMO-07, 22/08/2007 p.10

The Likelihood: 1-dim case Take a single observable ξ(m) that has been measured c central value, σ standard exptal error (e.g., M W ) L. Roszkowski, COSMO-07, 22/08/2007 p.10

The Likelihood: 1-dim case Take a single observable ξ(m) that has been measured c central value, σ standard exptal error (e.g., M W ) define χ 2 = [ξ(m) c]2 σ 2 L. Roszkowski, COSMO-07, 22/08/2007 p.10

The Likelihood: 1-dim case Take a single observable ξ(m) that has been measured c central value, σ standard exptal error (e.g., M W ) define χ 2 = [ξ(m) c]2 σ 2 assuming Gaussian distribution (d (c, σ)): L = p(σ, c ξ(m)) = 1 2πσ exp [ χ2 2 ] L. Roszkowski, COSMO-07, 22/08/2007 p.10

The Likelihood: 1-dim case Take a single observable ξ(m) that has been measured c central value, σ standard exptal error (e.g., M W ) define χ 2 = [ξ(m) c]2 σ 2 assuming Gaussian distribution (d (c, σ)): L = p(σ, c ξ(m)) = 1 2πσ exp [ χ2 2 when include theoretical error estimate τ (assumed Gaussian): σ s = σ 2 + τ 2 TH error smears out the EXPTAL range ] L. Roszkowski, COSMO-07, 22/08/2007 p.10

The Likelihood: 1-dim case Take a single observable ξ(m) that has been measured c central value, σ standard exptal error (e.g., M W ) define χ 2 = [ξ(m) c]2 σ 2 assuming Gaussian distribution (d (c, σ)): L = p(σ, c ξ(m)) = 1 2πσ exp [ χ2 2 when include theoretical error estimate τ (assumed Gaussian): σ s = σ 2 + τ 2 TH error smears out the EXPTAL range for several uncorrelated observables (assumed Gaussian): [ L = exp i χ 2 i 2 ] ] L. Roszkowski, COSMO-07, 22/08/2007 p.10

Probability maps of the CMSSM L. Roszkowski, COSMO-07, 22/08/2007 p.11

Probability maps of the CMSSM arxiv:0705.2012 4 Roszkowski, Ruiz & Trotta (2007) 3.5 3 MCMC scan Bayesian analysis m 0 2.5 2 1.5 relative probability density fn flat priors 68% total prob. inner contours 1 95% total prob. outer contours 0.5 m 1/2 CMSSM µ>0 0.5 1 1.5 2 2-dim pdf p(m 0, m 1/2 d) favored: m 0 m 1/2 (FP region) Relative probability density 0 0.2 0.4 0.6 0.8 1 L. Roszkowski, COSMO-07, 22/08/2007 p.11

Probability maps of the CMSSM arxiv:0705.2012 4 Roszkowski, Ruiz & Trotta (2007) 3.5 3 MCMC scan Bayesian analysis m 0 2.5 2 1.5 relative probability density fn flat priors 68% total prob. inner contours 1 95% total prob. outer contours 0.5 m 1/2 CMSSM µ>0 0.5 1 1.5 2 2-dim pdf p(m 0, m 1/2 d) favored: m 0 m 1/2 (FP region) Relative probability density 0 0.2 0.4 0.6 0.8 1 similar study by Allanach+Lester(+Weber) (but no mean qof), see also, Ellis et al (EHOW, χ 2 approach, no MCMC, they fix SM parameters!) L. Roszkowski, COSMO-07, 22/08/2007 p.11

Probability maps of the CMSSM arxiv:0705.2012 4 Roszkowski, Ruiz & Trotta (2007) 3.5 3 MCMC scan Bayesian analysis m 0 2.5 2 1.5 relative probability density fn flat priors 68% total prob. inner contours 1 95% total prob. outer contours 0.5 m 1/2 CMSSM µ>0 0.5 1 1.5 2 2-dim pdf p(m 0, m 1/2 d) favored: m 0 m 1/2 (FP region) Relative probability density 0 0.2 0.4 0.6 0.8 1 unlike others (except for A+L), we vary also SM parameters L. Roszkowski, COSMO-07, 22/08/2007 p.11

Strategies for WIMP Detection L. Roszkowski, COSMO-07, 22/08/2007 p.12

Strategies for WIMP Detection direct detection (DD): measure WIMPs scattering off a target go underground to beat cosmic ray bgnd L. Roszkowski, COSMO-07, 22/08/2007 p.12

Strategies for WIMP Detection direct detection (DD): measure WIMPs scattering off a target indirect detection (ID): go underground to beat cosmic ray bgnd L. Roszkowski, COSMO-07, 22/08/2007 p.12

Strategies for WIMP Detection direct detection (DD): measure WIMPs scattering off a target indirect detection (ID): HE neutrinos from the Sun (or Earth) go underground to beat cosmic ray bgnd WIMPs get trapped in Sun s core, start pair annihilating, only ν s escape L. Roszkowski, COSMO-07, 22/08/2007 p.12

Strategies for WIMP Detection direct detection (DD): measure WIMPs scattering off a target indirect detection (ID): HE neutrinos from the Sun (or Earth) go underground to beat cosmic ray bgnd WIMPs get trapped in Sun s core, start pair annihilating, only ν s escape antimatter (e +, p, D) from WIMP pair-annihilation in the MW halo from within a few kpc L. Roszkowski, COSMO-07, 22/08/2007 p.12

Strategies for WIMP Detection direct detection (DD): measure WIMPs scattering off a target indirect detection (ID): HE neutrinos from the Sun (or Earth) go underground to beat cosmic ray bgnd WIMPs get trapped in Sun s core, start pair annihilating, only ν s escape antimatter (e +, p, D) from WIMP pair-annihilation in the MW halo from within a few kpc gamma rays from WIMP pair-annihilation in the Galactic center depending on DM distribution in the GC L. Roszkowski, COSMO-07, 22/08/2007 p.12

Strategies for WIMP Detection direct detection (DD): measure WIMPs scattering off a target indirect detection (ID): HE neutrinos from the Sun (or Earth) go underground to beat cosmic ray bgnd WIMPs get trapped in Sun s core, start pair annihilating, only ν s escape antimatter (e +, p, D) from WIMP pair-annihilation in the MW halo from within a few kpc gamma rays from WIMP pair-annihilation in the Galactic center depending on DM distribution in the GC other ideas: traces of WIMP annihilation in dwarf galaxies, in rich clusters, etc more speculative L. Roszkowski, COSMO-07, 22/08/2007 p.12

Dark matter detection: σ SI p L. Roszkowski, COSMO-07, 22/08/2007 p.13

Dark matter detection: σ SI p MCMC+Bayesian analysis (pb)] Log[σ p SI 4 5 6 7 8 9 Roszkowski, Ruiz & Trotta (2007) CMSSM, µ > 0 ZEPLIN I EDELWEISS I CDMS II XENON 10 10 11 0.2 0.4 0.6 0.8 1 m χ L. Roszkowski, COSMO-07, 22/08/2007 p.13

Dark matter detection: σ SI p MCMC+Bayesian analysis compare: fixed grid scan (pb)] Log[σ p SI 4 5 6 7 8 9 Roszkowski, Ruiz & Trotta (2007) CMSSM, µ > 0 ZEPLIN I EDELWEISS I CDMS II XENON 10 10 11 0.2 0.4 0.6 0.8 1 m χ L. Roszkowski, COSMO-07, 22/08/2007 p.13

Prospects for direct detection: σ SI p (pb)] 4 5 6 7 Roszkowski, Ruiz & Trotta (2007) CMSSM, µ > 0 ZEPLIN I EDELWEISS I CDMS II XENON 10 Bayesian analysis, flat priors (MCMC) Log[σ p SI 8 9 10 11 0.2 0.4 0.6 0.8 1 m χ internal (external): 68% (95%) region L. Roszkowski, COSMO-07, 22/08/2007 p.14

Prospects for direct detection: σ SI p (pb)] Log[σ p SI 4 5 6 7 8 9 10 11 Roszkowski, Ruiz & Trotta (2007) CMSSM, µ > 0 ZEPLIN I EDELWEISS I CDMS II m χ XENON 10 0.2 0.4 0.6 0.8 1 Bayesian analysis, flat priors XENON-10 (June 07): new limit σp SI < 10 7 pb: explore the FP region (large m 0 m 1/2 ), (MCMC) also CDMS II (?) outside of the LHC reach ultimately: 1 tonne detectors: σp SI < 10 10 pb will cover all 68% region internal (external): 68% (95%) region L. Roszkowski, COSMO-07, 22/08/2007 p.14

Prospects for direct detection: σ SI p (pb)] Log[σ p SI 4 5 6 7 8 9 10 11 Roszkowski, Ruiz & Trotta (2007) CMSSM, µ > 0 ZEPLIN I EDELWEISS I CDMS II m χ XENON 10 0.2 0.4 0.6 0.8 1 Bayesian analysis, flat priors XENON-10 (June 07): new limit σp SI < 10 7 pb: explore the FP region (large m 0 m 1/2 ), (MCMC) also CDMS II (?) outside of the LHC reach ultimately: 1 tonne detectors: σp SI < 10 10 pb will cover all 68% region internal (external): 68% (95%) region most probable range: 10 7 pb < σ SI p < 10 10 pb partly outside of the LHC reach (m χ < 400 GeV) L. Roszkowski, COSMO-07, 22/08/2007 p.14

CDM Halo Models...not a settled matter L. Roszkowski, COSMO-07, 22/08/2007 p.15

CDM Halo Models fitting DM halo with a semi-heuristic formula: ( r ρ DM (r) = ρ c / a ) γ [ 1 + ( ) r α ] (β γ)/α a...not a settled matter α, β, γ - adjustable parameters ρ c = ρ 0 ` r0a γ h1 + R0 a α i (β γ)/α, ρ0 0.3 GeV/ cm 3 - DM density at r 0 a - scale radius - from num. sim s or to match observations L. Roszkowski, COSMO-07, 22/08/2007 p.15

CDM Halo Models fitting DM halo with a semi-heuristic formula: ( r ρ DM (r) = ρ c / a ) γ [ 1 + ( ) r α ] (β γ)/α a...not a settled matter α, β, γ - adjustable parameters ρ c = ρ 0 ` r0a γ h1 + R0 a α i (β γ)/α, ρ0 0.3 GeV/ cm 3 - DM density at r 0 a - scale radius - from num. sim s or to match observations adiabatic compression due to baryon concentration in the GC: likely effect: central cusp becames steeper: model model-c L. Roszkowski, COSMO-07, 22/08/2007 p.15

CDM Halo Models fitting DM halo with a semi-heuristic formula: ( r ρ DM (r) = ρ c / a ) γ [ 1 + ( ) r α ] (β γ)/α a...not a settled matter α, β, γ - adjustable parameters ρ c = ρ 0 ` r0a γ h1 + R0 a α i (β γ)/α, ρ0 0.3 GeV/ cm 3 - DM density at r 0 a - scale radius - from num. sim s or to match observations adiabatic compression due to baryon concentration in the GC: likely effect: central cusp becames steeper: model model-c some most popular models: halo model a ( kpc) r 0 ( kpc) (α, β, γ) small r: r γ large r: isothermal cored 3.5 8.5 (2, 2, 0) flat r 2 NFW 20.0 8.0 (1, 3, 1) r 1 r 3 NFW-c 20.0 8.0 (1.5, 3, 1.5) r 1.5 r 3 Moore 28.0 8.0 (1, 3, 1.5) r 1.5 r 3 Moore-c 28.0 8.0 (0.8, 2.7, 1.65) r 1.65 r 2.7 L. Roszkowski, COSMO-07, 22/08/2007 p.15

CDM Halo Models fitting DM halo with a semi-heuristic formula: ( r ρ DM (r) = ρ c / a ) γ [ 1 + ( ) r α ] (β γ)/α a...not a settled matter α, β, γ - adjustable parameters ρ c = ρ 0 ` r0a γ h1 + R0 a α i (β γ)/α, ρ0 0.3 GeV/ cm 3 - DM density at r 0 a - scale radius - from num. sim s or to match observations adiabatic compression due to baryon concentration in the GC: likely effect: central cusp becames steeper: model model-c some most popular models: halo model a ( kpc) r 0 ( kpc) (α, β, γ) small r: r γ large r: isothermal cored 3.5 8.5 (2, 2, 0) flat r 2 NFW 20.0 8.0 (1, 3, 1) r 1 r 3 NFW-c 20.0 8.0 (1.5, 3, 1.5) r 1.5 r 3 Moore 28.0 8.0 (1, 3, 1.5) r 1.5 r 3 Moore-c 28.0 8.0 (0.8, 2.7, 1.65) r 1.65 r 2.7 Many open questions: clumps??, central cusp??, spherical or tri axial??,... L. Roszkowski, COSMO-07, 22/08/2007 p.15

Gamma Rays from the Galactic Center L. Roszkowski, COSMO-07, 22/08/2007 p.16

Gamma Rays from the Galactic Center in the GC: ρ DM is likely to be larger WIMP pair annihilation χχ SMparticles ρ 2 χ will be enhanced WIMP annihilation final decay products: W W, ZZ, qq,... diffuse γ radiation (and/or γγ, γz) L. Roszkowski, COSMO-07, 22/08/2007 p.16

Gamma Rays from the Galactic Center in the GC: ρ DM is likely to be larger WIMP pair annihilation χχ SMparticles ρ 2 χ will be enhanced WIMP annihilation final decay products: W W, ZZ, qq,... diffuse γ radiation (and/or γγ, γz) diffuse γ radiation: l.o.s - line of sight dφ γ de γ (E γ, ψ) = X i σ i v 8πm 2 χ dn i γ de γ Z l.o.s. dlρ 2 χ(r(l, ψ)) L. Roszkowski, COSMO-07, 22/08/2007 p.16

Gamma Rays from the Galactic Center in the GC: ρ DM is likely to be larger WIMP pair annihilation χχ SMparticles ρ 2 χ will be enhanced WIMP annihilation final decay products: W W, ZZ, qq,... diffuse γ radiation (and/or γγ, γz) diffuse γ radiation: l.o.s - line of sight dφ γ de γ (E γ, ψ) = X i σ i v 8πm 2 χ dn i γ de γ Z l.o.s. dlρ 2 χ(r(l, ψ)) separate particle physics and astrophysics inputs; define: and J(ψ) = 1 8.5 kpc 1 0.3 GeV/cm 3 Z J( Ω) = (1/ Ω) «2 Z Ω l.o.s. J(ψ)dΩ dl ρ 2 χ (r(l, ψ)) Ω - finite angular resolution of a GR detector L. Roszkowski, COSMO-07, 22/08/2007 p.16

Gamma Rays from the Galactic Center diff l flux from the cone Ω dφ γ X (E γ, Ω) = Φ γ,0 de γ i σ i v 10 29 cm 3 sec 1 «dn i γ de γ «2 100 GeV ` J( Ω) Ω m χ Φ γ,0 = 0.94 10 13 cm 2 sec 1 sr 1 L. Roszkowski, COSMO-07, 22/08/2007 p.17

Gamma Rays from the Galactic Center diff l flux from the cone Ω dφ γ X (E γ, Ω) = Φ γ,0 de γ i σ i v 10 29 cm 3 sec 1 «dn i γ de γ «2 100 GeV ` J( Ω) Ω m χ total flux Φ γ ( Ω) = Z mχ E th Φ γ,0 = 0.94 10 13 cm 2 sec 1 sr 1 de γ dφ γ de γ (E γ, Ω) L. Roszkowski, COSMO-07, 22/08/2007 p.17

Gamma Rays from the Galactic Center diff l flux from the cone Ω dφ γ X (E γ, Ω) = Φ γ,0 de γ i σ i v 10 29 cm 3 sec 1 «dn i γ de γ «2 100 GeV ` J( Ω) Ω m χ total flux Φ γ ( Ω) = Z mχ E th Φ γ,0 = 0.94 10 13 cm 2 sec 1 sr 1 de γ dφ γ de γ (E γ, Ω) main bgnd: π 0 s from primary CR int s with interstellar H and He atoms (π 0 γγ) L. Roszkowski, COSMO-07, 22/08/2007 p.17

Gamma Rays from the Galactic Center diff l flux from the cone Ω dφ γ X (E γ, Ω) = Φ γ,0 de γ i σ i v 10 29 cm 3 sec 1 «dn i γ de γ «2 100 GeV ` J( Ω) Ω m χ total flux Φ γ ( Ω) = Z mχ E th Φ γ,0 = 0.94 10 13 cm 2 sec 1 sr 1 de γ dφ γ de γ (E γ, Ω) main bgnd: π 0 s from primary CR int s with interstellar H and He atoms (π 0 γγ) much experimental activity: EGRET, ACT (HESS, Veritas, Cangaroo, etc); GLAST (due to launch in Dec 07): expected major improvement in sensitivity L. Roszkowski, COSMO-07, 22/08/2007 p.17

Gamma Rays from the Galactic Center diff l flux from the cone Ω dφ γ X (E γ, Ω) = Φ γ,0 de γ i σ i v 10 29 cm 3 sec 1 «dn i γ de γ «2 100 GeV ` J( Ω) Ω m χ total flux Φ γ ( Ω) = Z mχ E th Φ γ,0 = 0.94 10 13 cm 2 sec 1 sr 1 de γ dφ γ de γ (E γ, Ω) main bgnd: π 0 s from primary CR int s with interstellar H and He atoms (π 0 γγ) much experimental activity: EGRET, ACT (HESS, Veritas, Cangaroo, etc); GLAST (due to launch in Dec 07): expected major improvement in sensitivity all-sky survey effective energy range 20 MeV to 300 GeV, very good energy resolution angular resolution Ω 10 5 sr (or 0.15 deg for E γ > 10 GeV) L. Roszkowski, COSMO-07, 22/08/2007 p.17

GRs from the GC in the CMSSM use GLAST parameters Bayesian posterior probability maps L. Roszkowski, COSMO-07, 22/08/2007 p.18

GRs from the GC in the CMSSM use GLAST parameters Bayesian posterior probability maps total flux vs. m χ 4 Roszkowski, Ruiz, Silk & Trotta (2007) Moore adiab. comp. Φ γ from GC Log[Φ γ (cm 2 s 1 )] 6 8 10 NFW adiab. comp. NFW Moore CMSSM, µ > 0 GLAST reach (1yr) 12 14 iso. cored m χ Ω = 10 5 sr E > 1 GeV thr 0.2 0.4 0.6 0.8 1 Relative probability density 0 0.2 0.4 0.6 0.8 1 L. Roszkowski, COSMO-07, 22/08/2007 p.18

GRs from the GC in the CMSSM use GLAST parameters total flux vs. m χ Log[Φ γ (cm 2 s 1 )] 4 6 8 Roszkowski, Ruiz, Silk & Trotta (2007) Moore adiab. comp. NFW adiab. comp. NFW iso. cored Moore m χ Φ γ from GC CMSSM, µ > 0 GLAST reach (1yr) 10 12 Ω = 10 5 sr E > 1 GeV thr 14 0.2 0.4 0.6 0.8 1 Relative probability density 0 0.2 0.4 0.6 0.8 1 Bayesian posterior probability maps γ-ray energy spectrum: example (E 2 dφ/de) γ (GeV cm 2 s 1 ) 3 Roszkowski, Ruiz, Silk & Trotta (2007) 10 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 (E 2 dφ/de) γ from GC CMSSM, µ > 0 NFW adiab. comp. GLAST reach (1 yr) 159 GeV < m χ < 493 GeV (68% range) EGRET π 0 bgnd 10 1 10 0 10 1 10 2 E γ (GeV) m χ (GeV) 200 250 300 350 400 450 159 GeV < m χ < 493 GeV (68% range) L. Roszkowski, COSMO-07, 22/08/2007 p.18

GRs from the GC in the CMSSM use GLAST parameters Bayesian posterior probability maps total flux vs. m χ Log[Φ γ (cm 2 s 1 )] 4 6 8 10 12 14 Roszkowski, Ruiz, Silk & Trotta (2007) Moore adiab. comp. NFW adiab. comp. NFW iso. cored Moore m χ Φ γ from GC CMSSM, µ > 0 GLAST reach (1yr) Ω = 10 5 sr E thr > 1 GeV 0.2 0.4 0.6 0.8 1 Relative probability density 0 0.2 0.4 0.6 0.8 1 γ-ray energy spectrum: example (E 2 dφ/de) γ (GeV cm 2 s 1 ) 3 Roszkowski, Ruiz, Silk & Trotta (2007) 10 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 (E 2 dφ/de) γ from GC CMSSM, µ > 0 NFW adiab. comp. GLAST reach (1 yr) 159 GeV < m χ < 493 GeV (68% range) EGRET π 0 bgnd 10 1 10 0 10 1 10 2 E γ (GeV) m χ (GeV) 200 250 300 350 400 450 159 GeV < m χ < 493 GeV (68% range) GLAST prospects critically depend on how cuspy is the GC if more cuspy than NFW: all 95% CMSSM range will be explored (at 95% CL) even if signal detected: much uncertainty in determining m χ L. Roszkowski, COSMO-07, 22/08/2007 p.18

Positron flux and PAMELA L. Roszkowski, COSMO-07, 22/08/2007 p.19

Positron flux and PAMELA E e + from from DM annihilations propagate in interstellar magnetic field K(ɛ) = 2.1 10 28 ɛ 0.6 cm 2 sec 1 much less halo model dependence ɛ = E e +/1 GeV loose energy via inverse Compton scattering b(ɛ) = ɛ2 τ E 10 16 ɛ 2 sec 1 τ E = 10 16 sec 1 diffusion zone: infinite slab of height L = 4 kpc, free escape BC s L. Roszkowski, COSMO-07, 22/08/2007 p.19

Positron flux and PAMELA E e + from from DM annihilations propagate in interstellar magnetic field K(ɛ) = 2.1 10 28 ɛ 0.6 cm 2 sec 1 much less halo model dependence ɛ = E e +/1 GeV loose energy via inverse Compton scattering b(ɛ) = ɛ2 τ E 10 16 ɛ 2 sec 1 τ E = 10 16 sec 1 diffusion zone: infinite slab of height L = 4 kpc, free escape BC s NFW + adiab. compression Φ e+ /(Φ e+ +Φ e ) 10 1 10 2 10 3 10 4 10 5 Roszkowski, Ruiz, Silk & Trotta (2007) CMSSM, µ > 0 NFW adiab. comp. Moore adiab. comp. 159 GeV < m χ < 493 GeV (68% range) 10 1 10 0 10 1 10 2 E e+ (GeV) m χ (GeV) BF=1 bgnd CAPRICE 94 HEAT 94+95 HEAT 00 200 250 300 350 400 450 (scales linearly with boost factor) L. Roszkowski, COSMO-07, 22/08/2007 p.19

Positron flux and PAMELA E e + from from DM annihilations propagate in interstellar magnetic field K(ɛ) = 2.1 10 28 ɛ 0.6 cm 2 sec 1 much less halo model dependence ɛ = E e +/1 GeV loose energy via inverse Compton scattering b(ɛ) = ɛ2 τ E 10 16 ɛ 2 sec 1 τ E = 10 16 sec 1 diffusion zone: infinite slab of height L = 4 kpc, free escape BC s NFW + adiab. compression Φ e+ /(Φ e+ +Φ e ) 10 1 10 2 10 3 10 4 10 5 Roszkowski, Ruiz, Silk & Trotta (2007) CMSSM, µ > 0 NFW adiab. comp. Moore adiab. comp. 159 GeV < m χ < 493 GeV (68% range) 10 1 10 0 10 1 10 2 E e+ (GeV) m χ (GeV) BF=1 bgnd CAPRICE 94 HEAT 94+95 HEAT 00 200 250 300 350 400 450 159 GeV < m χ < 493 GeV (68% range) L. Roszkowski, COSMO-07, 22/08/2007 p.19

Positron flux and PAMELA E e + from from DM annihilations propagate in interstellar magnetic field K(ɛ) = 2.1 10 28 ɛ 0.6 cm 2 sec 1 much less halo model dependence ɛ = E e +/1 GeV loose energy via inverse Compton scattering b(ɛ) = ɛ2 τ E 10 16 ɛ 2 sec 1 τ E = 10 16 sec 1 diffusion zone: infinite slab of height L = 4 kpc, free escape BC s NFW + adiab. compression Φ e+ /(Φ e+ +Φ e ) 10 1 10 2 10 3 10 4 10 5 Roszkowski, Ruiz, Silk & Trotta (2007) CMSSM, µ > 0 NFW adiab. comp. Moore adiab. comp. 159 GeV < m χ < 493 GeV (68% range) 10 1 10 0 10 1 10 2 E e+ (GeV) m χ (GeV) BF=1 bgnd CAPRICE 94 HEAT 94+95 HEAT 00 200 250 300 350 400 450 prospects for PAMELA rather poor (...unless large boost factor) L. Roszkowski, COSMO-07, 22/08/2007 p.19

Summary L. Roszkowski, COSMO-07, 22/08/2007 p.20

Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY L. Roszkowski, COSMO-07, 22/08/2007 p.20

Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org L. Roszkowski, COSMO-07, 22/08/2007 p.20

Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org easily adaptable to other models, frameworks,... L. Roszkowski, COSMO-07, 22/08/2007 p.20

Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org easily adaptable to other models, frameworks,... CMSSM: direct detection of neutralino DM 2.8 10 10 pb < σ SI p < 3.9 10 8 pb (68%) L. Roszkowski, COSMO-07, 22/08/2007 p.20

Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org easily adaptable to other models, frameworks,... CMSSM: direct detection of neutralino DM 2.8 10 10 pb < σ SI p < 3.9 10 8 pb (68%) µ > 0 L. Roszkowski, COSMO-07, 22/08/2007 p.20

Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org easily adaptable to other models, frameworks,... CMSSM: direct detection of neutralino DM 2.8 10 10 pb < σ SI p < 3.9 10 8 pb (68%) can be probed at 95% CL with planned 1 tonne detectors µ > 0 L. Roszkowski, COSMO-07, 22/08/2007 p.20

Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org easily adaptable to other models, frameworks,... CMSSM: direct detection of neutralino DM 2.8 10 10 pb < σ SI p < 3.9 10 8 pb (68%) can be probed at 95% CL with planned 1 tonne detectors µ > 0 with 4 fb 1 /expt: 3σ evidence over 95% CL m h range L. Roszkowski, COSMO-07, 22/08/2007 p.20

Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org easily adaptable to other models, frameworks,... CMSSM: direct detection of neutralino DM 2.8 10 10 pb < σ SI p < 3.9 10 8 pb (68%) can be probed at 95% CL with planned 1 tonne detectors µ > 0 with 4 fb 1 /expt: 3σ evidence over 95% CL m h range DM direct detection: expt now probing favored 68% CL region some already probed with XENON-10 etc. γ-rays from the GC: DM signal guaranteed at GLAST if halo cuspy enough (NFW profile - borderline case) L. Roszkowski, COSMO-07, 22/08/2007 p.20

Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org easily adaptable to other models, frameworks,... CMSSM: direct detection of neutralino DM 2.8 10 10 pb < σ SI p < 3.9 10 8 pb (68%) can be probed at 95% CL with planned 1 tonne detectors µ > 0 with 4 fb 1 /expt: 3σ evidence over 95% CL m h range DM direct detection: expt now probing favored 68% CL region some already probed with XENON-10 etc. γ-rays from the GC: DM signal guaranteed at GLAST if halo cuspy enough (NFW profile - borderline case) positrons from DM: signal unlikely at PAMELA (unless large boost factor) L. Roszkowski, COSMO-07, 22/08/2007 p.20

Backup L. Roszkowski, COSMO-07, 22/08/2007 p.21

Fits of Observables Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) good fits: M t, α s, Ω χ h 2, BR( B X s γ) (for µ < 0!) not so good: M W, sin 2 θ eff, BR( B X s γ) (for µ > 0!) bad: a SUSY µ (for both signs of µ!) L. Roszkowski, COSMO-07, 22/08/2007 p.22

The Likelihood incorporates information about the observational data the mapping ξ(m) comes with uncertainties experimental uncertainty σ i theoretical uncertainty τ i introduce exact mapping ˆξ(θ, χ) the likelihood: where p(ˆξ ξ) = p(d ξ) = R p(d ˆξ)p(ˆξ ξ)d m ˆξ 1 exp 1 (2π) m/2 C 1/2 2 (ξ ˆξ)C 1 (ξ ˆξ) T p(d ˆξ) = total error for each observable: s i = C: m m covariance matrix if uncorrelated: C = diag `τ1 2,..., τ m 2 1 exp 1 (2π) m/2 D 1/2 2 (d ˆξ)D 1 (d ˆξ) T q σ 2 i + τ 2 i if uncorrelated: D = diag `σ1 2,..., σ2 m L. Roszkowski, COSMO-07, 22/08/2007 p.23

Probability maps of the CMSSM µ > 0: 4 Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) 3.5 2 3 m 0 2.5 2 1.5 m 1/2 1.5 1 1 0.5 CMSSM µ>0 0.5 1 1.5 2 m 1/2 0.5 CMSSM µ>0 4 2 0 2 4 6 A 0 4 Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) 3.5 2 3 m 0 2.5 2 1.5 m 1/2 1.5 1 1 0.5 CMSSM µ>0 0.5 CMSSM µ>0 10 20 30 40 50 60 10 20 30 40 50 60 tanβ tanβ 4 3.5 Roszkowski, Ruiz & Trotta (2007) 6 Roszkowski, Ruiz & Trotta (2007) 3 4 m 0 2.5 2 1.5 A 0 2 0 1 2 0.5 CMSSM µ>0 4 2 0 2 4 6 A 0 4 tanβ CMSSM µ>0 10 20 30 40 50 60 L. Roszkowski, COSMO-07, 22/08/2007 p.24

Probability maps of the CMSSM µ > 0: µ < 0: 4 Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) 4 Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) 3.5 2 3.5 2 3 3 m 0 2.5 2 1.5 m 1/2 1.5 1 m 0 2.5 2 1.5 m 1/2 1.5 1 1 0.5 CMSSM µ>0 0.5 CMSSM µ>0 1 0.5 CMSSM µ<0 0.5 CMSSM µ<0 0.5 1 1.5 2 4 2 0 2 4 6 0.5 1 1.5 2 4 2 0 2 4 6 m 1/2 A 0 m 1/2 A 0 4 Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) 4 Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) 3.5 2 3.5 2 3 3 m 0 2.5 2 1.5 m 1/2 1.5 1 m 0 2.5 2 1.5 m 1/2 1.5 1 1 0.5 CMSSM µ>0 0.5 CMSSM µ>0 1 0.5 CMSSM µ<0 0.5 CMSSM µ<0 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 tanβ tanβ tanβ tanβ 4 3.5 Roszkowski, Ruiz & Trotta (2007) 6 Roszkowski, Ruiz & Trotta (2007) 4 3.5 Roszkowski, Ruiz & Trotta (2007) 6 Roszkowski, Ruiz & Trotta (2007) 3 4 3 4 m 0 2.5 2 1.5 1 0.5 CMSSM µ>0 A 0 2 0 2 4 CMSSM µ>0 m 0 2.5 2 1.5 1 0.5 CMSSM µ<0 A 0 2 0 2 4 CMSSM µ<0 4 2 0 2 4 6 10 20 30 40 50 60 4 2 0 2 4 6 10 20 30 40 50 60 A 0 tanβ A 0 tanβ L. Roszkowski, COSMO-07, 22/08/2007 p.24

Posterior pdf vs. mean qof: µ < 0 L. Roszkowski, COSMO-07, 22/08/2007 p.25

Posterior pdf vs. mean qof: µ < 0 posterior pdf 4 Roszkowski, Ruiz & Trotta (2007) 3.5 3 m 0 2.5 2 1.5 1 0.5 m 1/2 CMSSM µ<0 0.5 1 1.5 2 Relative probability density 0 0.2 0.4 0.6 0.8 1 L. Roszkowski, COSMO-07, 22/08/2007 p.25

Posterior pdf vs. mean qof: µ < 0 posterior pdf 4 3.5 3 Roszkowski, Ruiz & Trotta (2007) 4 3.5 3 Roszkowski, Ruiz & Trotta (2007) mean qof m 0 2.5 2 1.5 m 0 2.5 2 1.5 1 1 0.5 CMSSM µ<0 0.5 CMSSM µ<0 0.5 1 1.5 2 0.5 1 1.5 2 m 1/2 m 1/2 Relative probability density 0 0.2 0.4 0.6 0.8 1 Mean quality of fit 0 0.2 0.4 0.6 0.8 1 µ < 0 generally poorer fit to the data L. Roszkowski, COSMO-07, 22/08/2007 p.25