Nagoya Institute of Technology

Similar documents
ECS455: Chapter 5 OFDM. ECS455: Chapter 5 OFDM. OFDM: Overview. OFDM Applications. Dr.Prapun Suksompong prapun.com/ecs455

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

Single-Carrier Block Transmission With Frequency-Domain Equalisation

Adaptive Bit-Interleaved Coded OFDM over Time-Varying Channels

Intercarrier and Intersymbol Interference Analysis of OFDM Systems on Time-Varying channels

Solutions Communications Technology II WS 2010/2011

Coherent Turbo Coded MIMO OFDM

ECS455: Chapter 5 OFDM

On the Performance of SC-MMSE-FD Equalization for Fixed-Point Implementations

A Computationally Efficient Block Transmission Scheme Based on Approximated Cholesky Factors

Analog Electronics 2 ICS905

Imperfect Sampling Moments and Average SINR

Square Root Raised Cosine Filter

Lecture 2. Fading Channel

Optimal Transmit Strategies in MIMO Ricean Channels with MMSE Receiver

Multicarrier transmission DMT/OFDM

EE 661: Modulation Theory Solutions to Homework 6

CoherentDetectionof OFDM

ARCC Workshop on Time-reversal communications in richly scattering environments. Large-Delay-Spread Channels: Mathematical models and fast algorithms

FBMC/OQAM transceivers for 5G mobile communication systems. François Rottenberg

Data-aided and blind synchronization

Direct-Sequence Spread-Spectrum

Digital Communications: A Discrete-Time Approach M. Rice. Errata. Page xiii, first paragraph, bare witness should be bear witness

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

MIMO Capacity of an OFDM-based system under Ricean fading

ELEC E7210: Communication Theory. Lecture 4: Equalization

Example: Bipolar NRZ (non-return-to-zero) signaling

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood

Wireless Information Transmission System Lab. Channel Estimation. Institute of Communications Engineering. National Sun Yat-sen University

An Adaptive Decision Feedback Equalizer for Time-Varying Frequency Selective MIMO Channels

Efficient Equalization Hardware Arch SC-FDMA Systems without Cyclic Prefi. Author(s)Ferdian, Rian; Anwar, Khoirul; Adion

Burst Markers in EPoC Syed Rahman, Huawei Nicola Varanese, Qualcomm

Time-Variant Channel Equalization via Discrete Prolate Spheroidal Sequences

Effects of Non-Ideal Pre-Distorter High Power Amplifiers in WCDMA Using Multi-User Detectors

SINGLE CARRIER BLOCK TRANSMISSION WITHOUT GUARD INTERVAL

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

Chapter 4: Continuous channel and its capacity

Maximum Achievable Diversity for MIMO-OFDM Systems with Arbitrary. Spatial Correlation

Hopping Pilots for Estimation of Frequency-Offset and Multi-Antenna Channels in MIMO OFDM

Capacity Analysis of MMSE Pilot Patterns for Doubly-Selective Channels. Arun Kannu and Phil Schniter T. H. E OHIO STATE UNIVERSITY.

Lecture 4 Capacity of Wireless Channels

DETECTION AND PULSE COMPRESSION IN PASSIVE RADAR WITH OFDM RADIO SIGNALS

Transmit Beamforming for Frequency Selective Channels with Suboptimum Equalization

RECENT advance in digital signal processing technology

Advanced 3G and 4G Wireless Communication Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur

Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems

Performance Analysis of Spread Spectrum CDMA systems

Estimation of Performance Loss Due to Delay in Channel Feedback in MIMO Systems

5. Pilot Aided Modulations. In flat fading, if we have a good channel estimate of the complex gain gt, ( ) then we can perform coherent detection.

New theoretical framework for OFDM/CDMA systems with peak-limited nonlinearities

Performance Analysis of a Deterministic Channel Estimator for Block Transmission Systems With Null Guard Intervals

A First Course in Digital Communications

On joint CFO and channel estimation in single-user and multi-user OFDM systems

Improved Detected Data Processing for Decision-Directed Tracking of MIMO Channels

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics.

Interleave Division Multiple Access. Li Ping, Department of Electronic Engineering City University of Hong Kong

Mobile Communications TCS 455

Channel Shortening for Bit Rate Maximization in DMT Communication Systems

Scilab Textbook Companion for Digital Telephony by J. C. Bellamy 1

Adaptive Linear Filtering Using Interior Point. Optimization Techniques. Lecturer: Tom Luo

A Circulated Block Transmission Scheme for FTN Signaling

Maximum-Likelihood Carrier Frequency Offset Estimation for OFDM Systems Over Frequency-Selective Fading Channels

Revision of Lecture 4

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz.

ON DECREASING THE COMPLEXITY OF LATTICE-REDUCTION-AIDED K-BEST MIMO DETECTORS.

Chapter 2 Underwater Acoustic Channel Models

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Channel characterization and modeling 1 September 8, Signal KTH Research Focus

QPSK and OQPSK in Frequency Nonselective Fading

N V R T F L F RN P BL T N B ll t n f th D p rt nt f l V l., N., pp NDR. L N, d t r T N P F F L T RTL FR R N. B. P. H. Th t t d n t r n h r d r

Adaptive interference suppression algorithms for DS-UWB systems

PRACTICE FINAL EXAM SOLUTION Jing Liang 12/06/2006

Iterative Timing Recovery

Reducing Multiple Access Interference in Broadband Multi-User Wireless Networks

OFDM Modulation Recognition Using Convolutional Neural Networks

Lecture 4 Capacity of Wireless Channels

R communications. It degrades the bit error rate (BER),

TECHNICAL RESEARCH REPORT

An Equalization Technique for 54 Mbps OFDM Systems

EE5713 : Advanced Digital Communications

2013/Fall-Winter Term Monday 12:50 Room# or 5F Meeting Room Instructor: Fire Tom Wada, Professor

BER Analysis of Uplink OFDMA in the Presence of Carrier Frequency and Timing Offsets

2A1H Time-Frequency Analysis II

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

Third-Order Kalman Filter: Tuning and Steady-State Performance

Chapter 10. Timing Recovery. March 12, 2008

Determining the Optimal Decision Delay Parameter for a Linear Equalizer

Minimum BER Linear Transceivers for Block. Communication Systems. Lecturer: Tom Luo

An Adaptive Blind Channel Shortening Algorithm for MCM Systems

A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Optimized Impulses for Multicarrier Offset-QAM

Digital Baseband Systems. Reference: Digital Communications John G. Proakis

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

BLIND CHIP-RATE EQUALISATION FOR DS-CDMA DOWNLINK RECEIVER

4/16/2012 S EVEN LESS S LESS S LESS R E MORE M O MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MO RE

Fast Time-Varying Dispersive Channel Estimation and Equalization for 8-PSK Cellular System

Single- and multi-carrier IDMA schemes with cyclic prefixing and zero padding techniques

Transcription:

09.03.19 1

2

OFDM SC-FDE (single carrier-fde)ofdm PAPR 3

OFDM SC-FDE (single carrier-fde)ofdm PAPR 4

5

Mobility 2G GSM PDC PHS 3G WCDMA cdma2000 WLAN IEEE802.11b 4G 20112013 WLAN IEEE802.11g, n BWA 10kbps 2Mbps 10Mbps 100Mbps 1Gbps 6

C B log 2(1 S Hz / N ) bit/sec AWGN 7

OFDM SC-FDE (single carrier-fde)ofdm PAPR 8

9

10

data s / p QPSK mapping I Q LPF LPF /2 cos BPF PA s(t) chan nel AWGN n(t) r(t) LNA transmitter channel receiver BPF /2 I Q cos LPF LPF QPSK demapping p / s data data RF s / p QPSK mapping LPF s(t) chan nel AWGN n(t) r(t) LPF transmitter channel receiver QPSK demapping p / s data 11

h(, t) t s(t) h(,t) n(t) r(t) rt () h(,) t st () nt () H(f, t) 12

h(, t) h(, 0) received power (db) s(t) h(,t) n(t) r(t) 0 1 2 3 4 delay time (s) h(, 1) received power (db) 0 1 2 3 4 delay time (s) 13

OFDM SC-FDE (single carrier-fde)ofdm PAPR 14

h(,) t c() t () t Jakes received power (db) c(t)(t) 0 1 2 3 4 delay time (s) n v m/s (vcosn)/ Hz m 15

cos(2f 0 t)+cos(2{f 0 +f}t) 2 1 0-1 -2-10 -8-6 -4-2 0 2 4 6 8 10 f 0 =1, f=0.075 1.E+01 c(t) amplitude 1.E+00 1.E-01 1.E-02 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 t sec 16

or s(t) c(t) n(t) r(t) rt () ctst () () nt () 17

c(t) NLOS (non-line-of-sight) 2 r r f( r) exp r 2 2 2 2 2 c(t) LOS (line-of-sight) 2 2 ( ) r exp r a ar f r I 2 2 0 2 2 a I 0 18

1.E+01 1.E+00 fd Hzv m/s f0 Hzc f d vf c f d 0 1 0.5 fdts=0.001 fdts=0.005 fdts=0.01 amplitude 1.E-01 1.E-02 1.E-03 0 0.2 0.4 0.6 0.8 1 time sec fdts=0.001 fdts=0.005 fdts=0.01 phase / pi 0-0.5-1 Ts=0.001 sec Ts 0 0.2 0.4 0.6 0.8 1 time sec 19

r(t) rt () ctst ()() nt () data serial to parallel QPSK mapping pilot symbol insertion s(k) LPF Rayleigh fading c(k) data parallel to serial decision ^r(k) channel equalization r(k) LPF AWGN n 0 (k) without consideration at this time channel estimation 20

c(t) ZF rk ( ) nk ( ) rk ( ) sk ( ) ck ( ) ck ( ) MMSE * c k ( ) rk ( ) rk ( ) ck ( ) E sk ( ) 2 2 2 rk ( ) cksk ( ) ( ) nk ( ) sk ( ) rk ( ) nk ( ) 2 rk ˆ( ) ck ( ) k c(t)c(f)lpf 21

1.E+00 1.E-01 1.E-02 Ts=0.001, QPSK ZF fdts BER 1.E-03 1.E-04 1.E-05 1.E-06 fdts=0.001 w/ eq. fdts=0.001 w/o eq. fdts=0.01 w/ eq. fdts=0.01 w/o eq. theory 0 10 20 30 40 50 Avg. Eb/N0 db 22

OFDM SC-FDE (single carrier-fde)ofdm PAPR 23

h(t,) [db] H( f, t) H( f) h 6 h 7 h8 h 9 0 h 0 h 1 T s h 2 h 3 h4 h 5 2T s 1 db 9T s 24

Ts received power (db) 0 1 2 3 4 delay time (s) received power (db) trans. rate = 250 Kbps Ts= 4 s delay time (s) 0 1 2 3 4 delay time (s) 0 4 received power (db) trans. rate = 3.84 Mbps Ts= 0.26 s 25

H(f) h(t,) [db] h(t,) [db] h(t,) [db] h 0 1 db h () h 1 h 2 h 3 h4 h 5 h 6 h 7 h8 h 9 0 0 T s 2T s 0 2T s 9T s T s 1.E+00 1.E+01 1.E+01 Hf () amplitude 1.E-01 amplitude 1.E+00 1.E-01 amplitude 1.E+00 1.E-01 1.E-02 1.E-02 1.E-02 H (L=1) H (L=10, 10dB decayed) H (L=10, 1dB decayed) 1.E-03 1.E-03 1.E-03-500 -400-300 -200-100 0 100 200 300 400 500-500 -400-300 -200-100 0 100 200 300 400 500-500 -400-300 -200-100 0 100 200 300 400 500 f Hz f Hz f Hz 26

H(f) L1 rk ( ) hsk ( l) nk ( ) l l 0 L1 rk ( ) hs l ( k l) nk ( ) rk ˆ( ) sk ( ) h h h 0 l1 0 0 h l = 27

FDE: frequency domain equalization r( k) h0s( k) h1 s( k 1) hl 1s( k L 1) n( k) ZF MMSE R( n) h h e h e S ( n) N ( n) 2 nt s N 2 n ( L 1) T s N 0 1 L 1 H ( n) S ( n) N ( n) Rn ( ) Nn ( ) Rn ( ) Sn ( ) Hn ( ) Hn ( ) Rn ( ) Rn ( ) H * ( n) Hn ( ) ESn ( ) 2 2 2 28

OFDM SC-FDE (single carrier-fde)ofdm PAPR 29

data (orthogonal frequency division multiplexing) serial to parallel QPSK mapping S / P S(n) R(n) ^ IFFT R(n) guard interval insertion pilot symbol insertion s(k) channel h(k) data parallel to serial decision P / S FDE FFT guard interval removal r(k) AWGN n(k) LANWiMAX channel estimation 30

I-channel 1 0.8 0.6 0.4 0.2 0-0.2-0.4-0.6-0.8-1 0 0.02 0.04 0.06 0.08 0.1 0.12 t sec Ts=0.001 sec, K=64 QPSK 1.E+01 amplitude 1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05-4000 -3000-2000 -1000 0 1000 2000 3000 4000 f Hz 31

peak to average power ratio 32

1 OFDM 1 K 0 Ts sec 0 Ts sec 1 1 T=KTs sec Ts TsT 33

ISI: inter-symbol interference OFDM1 K OFDM GI: guard interval OFDM1 K 34

h 2 h 3 h 4 h(t,) [db] h 0 h 1 h 5 h 6 h 7 h 8 h 9 i.i.d independently and identically distributed 0 2T s T s 35

BER 1.E+00 1.E-01 1.E-02 1.E-03 L=1 L=2 L=4 L=8 L=10 L=16 theory Ts=0.001 sec, K=64 T=0.064 sec QPSKOFDM GI=T/8=8Ts LTs ZF 1.E-04 1.E-05 0 5 10 15 20 25 30 35 Avg. Eb/N0 db 36

h 2 h 3 h4 h(t,) [db] h 0 h 1 h 5 h 6 h 7 h8 h9 37 0 1 L1 Rn ( ) h( n) Sn ( ) h( n) Sne ( ) 0 1 h nsne Nn 2nT j2 n( L1) Ts/ N L1( ) ( ) ( ) 0 2T s r( k) h ( k) s( k) h( k1) s( k1) h ( kl1) s( kl1) n( k) T s s N p28

OFDM SC-FDE (single carrier-fde)ofdm PAPR 38

single carrier- cyclic prefix data serial to parallel QPSK mapping cyclic prefix insertion R(n) pilot symbol insertion s(k) h(k) channel data parallel to serial decision r(k) ^ IFFT FDE FFT cyclic prefix removal r(k) AWGN n(k) channel estimation 39

BER 1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 10.5 db OFDM QPSK-SC Ts=0.001 sec, K=64 T=0.064 sec QPSK ZF Ts=0.001 sec, K=64 MMSE 1.E-05 0 5 10 15 20 25 30 35 Avg. Eb/N0 db 40 Nagoya Institute of Technology

amplitude 1.E+01 1.E+00 1.E-01 1.E-02 1.E-03 OFDM QPSK-SC root-rolloff 0.5 QPSK-SC non-lpf Ts=0.001 sec, K=64 T=0.064 sec QPSK Ts=0.001 sec, K=64 1.E-04 1.E-05-4000 -3000-2000 -1000 0 1000 2000 3000 4000 41 f Hz

peak to average power ratio CCDF 1.0E+00 1.0E-01 1.0E-02 QPSK-SC OFDM Ts=0.001 sec, K=64 T=0.064 sec QPSK Ts=0.001 sec, K=64 root-nyquist LPF, =0.5 1.0E-03 2 4 6 8 10 12 PAPR (db) CCDF: complementary cumulative distribution function 42

OFDM-FDESC-FDE OFDM-FDE SC-FDE sinc 43

OFDM SC-FDE (single carrier-fde)ofdm PAPR 44

probability density f unction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Box-Muller 0 0.5 1 1.5 2 2.5 3 amplitude amp_n probability density function 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0-1 -0.5 0 0.5 1 radian / pi 45 rad_n

N 0 T sec -N/(2T) 0 N/(2T) Hz KTs sn sk, T KT s s s f s 2T 2T s s N 46

2 Eb/N0 db E 2 C S A k b QPSK 2 N N 2 BT n s N 0 B n T s =1 2 2 A 2k 10 0.1 ( E / N db) b 0 47

48

49

50