UCLA POSTECH UCSD ASIPP U

Similar documents
David R. Smith UW-Madison

NSTX. Electron gyro-scale fluctuations in NSTX plasmas. David Smith, PPPL. Supported by

Supported by. Role of plasma edge in global stability and control*

Supported by. The dependence of H-mode energy confinement and transport on collisionality in NSTX

D. Smith, R. Fonck, G. McKee, D. Thompson, and I. Uzun-Kaymak

Supported by. Validation of a new fast ion transport model for TRANSP. M. Podestà - PPPL

Supported by. Suppression of TAE and GAE with HHFW heating

Investigations of pedestal turbulence and ELM bursts in NSTX H-mode plasmas

Supported by. Relation of pedestal stability regime to the behavior of ELM heat flux footprints in NSTX-U and DIII-D. J-W. Ahn 1

Gyrokinetic Simulations of Tokamak Microturbulence

NSTX. Investigation of electron gyro-scale fluctuations in the National Spherical Torus Experiment. David Smith. Advisor: Ernesto Mazzucato

Supported by. The drift kinetic and rotational effects on determining and predicting the macroscopic MHD instability

Alfvén Cascade modes at high β in NSTX*

TURBULENT TRANSPORT THEORY

M. Podestà, M. Gorelenkova, D. S. Darrow, E. D. Fredrickson, S. P. Gerhardt, W. W. Heidbrink, R. B. White and the NSTX-U Research Team

Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas

Gyrokinetic Turbulence in Tokamaks and Stellarators

Transport at high beta in the NSTX spherical tokamak

International Workshop on the Frontiers of Modern Plasma Physics July On the Nature of Plasma Core Turbulence.

Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence

Dynamic retention and deposition in NSTX measured with quartz microbalances

Transport Improvement Near Low Order Rational q Surfaces in DIII D

NSTX Results and Plans toward 10-MA CTF

Microtearing Simulations in the Madison Symmetric Torus

Particle-in-cell simulations of electron transport from plasma turbulence: recent progress in gyrokinetic particle simulations of turbulent plasmas

GTC Simulation of Turbulence and Transport in Tokamak Plasmas

Validating Simulations of Multi-Scale Plasma Turbulence in ITER-Relevant, Alcator C-Mod Plasmas

Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence

Multi-scale turbulence, electron transport, and Zonal Flows in DIII-D

Observation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H- and QH-mode Plasmas

Critical gradient formula for toroidal electron temperature gradient modes

Overview of Gyrokinetic Theory & Properties of ITG/TEM Instabilities

Progress and Plans on Physics and Validation

Multiscale, multiphysics modeling of turbulent transport and heating in collisionless, magnetized plasmas

Reduced Electron Thermal Transport in Low Collisionality H-mode Plasmas in DIII-D and the Importance of Small-scale Turbulence

Co-existence and interference of multiple modes in plasma turbulence: Some recent GENE results

Gyrokinetic Transport Driven by Energetic Particle Modes

Z. Lin University of California, Irvine, CA 92697, USA. Supported by SciDAC GPS-TTBP, GSEP & CPES

TRANSPORT PROGRAM C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER

On the Nature of ETG Turbulence and Cross-Scale Coupling

Innovative Concepts Workshop Austin, Texas February 13-15, 2006

ECH Density Pumpout and Small Scale Turbulence in DIII-D

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

Long Time Simulations of Microturbulence in Fusion Plasmas

DPG School The Physics of ITER Physikzentrum Bad Honnef, Energy Transport, Theory (and Experiment) Clemente Angioni

Characterizing electron temperature gradient turbulence via numerical simulation

QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team*

C-Mod Transport Program

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas

G. Rewoldt, W.X. Wang, M. Bell, S. Kaye, W. Solomon, R. Nazikian, and W.M. Tang Princeton Plasma Physics Lab 1

EFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY*

Intro to Simulations & Bad-Curvature-Driven Instabilities in Magnetic Confinement Fusion

Validation Study of gyrokinetic simulation (GYRO) near the edge in Alcator C-Mod ohmic discharges

Low-collisionality density-peaking in GYRO simulations of C-Mod plasmas

Studies of Turbulence and Transport in Alcator C- Mod H-Mode Plasmas with Phase Contrast Imaging and Comparisons with GYRO*

Gyrokinetic simulations including the centrifugal force in a strongly rotating tokamak plasma

A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Self-consistent Zonal Flows *

Bursty Transport in Tokamaks with Internal Transport Barriers

GA A26866 REDUCED ELECTRON THERMAL TRANSPORT IN LOW COLLISIONALITY H-MODE PLASMAS IN DIII-D AND THE IMPORTANCE OF SMALL-SCALE TURBULENCE

ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model

MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELM-free QH and RMP Discharges

UCIrvine. Gyrokinetic Studies of Turbulence Spreading IAEA-CN-116/TH1-4

(a) (b) (c) (d) (e) (f) r (minor radius) time. time. Soft X-ray. T_e contours (ECE) r (minor radius) time time

Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas

The RFP: Plasma Confinement with a Reversed Twist

in tokamak plasmas Istvan Pusztai 1 Jeff Candy 2 Punit Gohil 2

Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas )

Gyrokinetic Theory and Dynamics of the Tokamak Edge

QTYUIOP LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL.

CORE TURBULENCE AND TRANSPORT REDUCTION IN DIII-D DISCHARGES WITH WEAK OR NEGATIVE MAGNETIC SHEAR

PSFC/JA D.R. Ernst, N. Basse, W. Dorland 1, C.L. Fiore, L. Lin, A. Long 2, M. Porkolab, K. Zeller, K. Zhurovich. June 2006

1 THC/P4-01. Shear flow suppression of turbulent transport and self-consistent profile evolution within a multi-scale gyrokinetic framework

Global Nonlinear Simulations of Ion and Electron Turbulence Usintg a Particle-In-Cell Approach

Gyrokine.c Analysis of the Linear Ohmic Confinement Regime in Alcator C- Mod *

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

INTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS

Turbulence and Transport The Secrets of Magnetic Confinement

The gyrokinetic turbulence code GENE - Numerics and applications

Advances in stellarator gyrokinetics

Coarse-graining the electron distribution in turbulence simulations of tokamak plasmas

Microturbulence in optimised stellarators

On the physics of shear flows in 3D geometry

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS

SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS

Global gyrokinetic particle simulations with kinetic electrons

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus)

C-Mod Core Transport Program. Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center

Validation of Theoretical Models of Intrinsic Torque in DIII-D and Projection to ITER by Dimensionless Scaling

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center

Theory Work in Support of C-Mod

I. INTRODUCTION PHYSICS OF PLASMAS VOLUME 5, NUMBER 5 MAY 1998

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX

Rotation and Neoclassical Ripple Transport in ITER

Role of Zonal Flows in TEM Turbulence through Nonlinear Gyrokinetic Particle and Continuum Simulation

Reduction of Turbulence and Transport in the Alcator C-Mod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection

Self-consistent modeling of ITER with BALDUR integrated predictive modeling code

Inter-linkage of transports and its bridging mechanism

Micro-tearing modes in the mega ampere spherical tokamak

Mechanisms of intrinsic toroidal rotation tested against ASDEX Upgrade observations

Transcription:

Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Illinois U Maryland U Rochester U Washington U Wisconsin Greg Hammett, J. Luc Peterson, Howard Yuh PPPL, Princeton University, Nova Photonics E. Mazzucato, R. Bell, J. Hosea, S. Kaye, B. LeBlanc, D. Mikkelsen, (PPPL), D. R. Smith (UW Madison), F. Levinton (Nova Photonics), C. W. Domier, N. C. Luhman, Jr., (UC Davis), W. Lee, H. K. Park (POSTECH), J. Candy, R. E. Waltz, E. A. Belli, G. M. Staebler (GA) and the NSTX Research Team Newton Institute, July 20, 2010 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010

Acknowledgements Many slides and results from Luc Peterson, Howard Yuh, David Smith, & NSTX team. H. Yuh, APS Invited Talk 08, PoP09, http://link.aip.org/link/phpaen/v16/i5/p056120/s1 (My talk has a theorist s view of NSTX results. I borrowed slides from NSTX team members, but this talk has not been reviewed by the NSTX team.) SciDAC Center for the Study of Plasma Microturbulence National Center for Computational Sciences at Oak Ridge National Laboratory, DOE DE-AC05-00OR22725 Princeton Plasma Physics Laboratory, Princeton University, DOE DE- AC02-09CH11466 Thanks to the workshop organizers and the Newton Institute. NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 2

Motivation to understand confinement NSTX is a high performance spherical torus that has achieved very high β Ion transport is typically neoclassical in H-modes H. Yuh et al. APS Invited Talk 08 Major radius 0.85 m Aspect ratio 1.3 Plasma current 1 MA Toroidal field 0.55 T Neutral Beams 6 MW High Harmonic Fast Wave 3 MW Elongation 2.7 Triangularity 0.8

Motivation to understand confinement NSTX is a high performance spherical torus that has achieved very high β Ion transport is typically neoclassical in H-modes Anomalous electron transport dominates heat loss ST fusion reactors must achieve improvements in core electron confinement NSTX is well equipped to study electron confinement H. Yuh et al. APS Invited Talk 08

Motivation to understand confinement NSTX is a high performance spherical torus that has achieved very high β Ion transport is typically neoclassical in H-modes Anomalous electron transport dominates heat loss ST fusion reactors must achieve improvements in core electron confinement NSTX is well equipped to study electron confinement Internal Transport Barriers (ITBs) lead to dramatic improvements in core electron confinement H. Yuh et al. APS Invited Talk 08

Summary Mini-tutorial on bad-curvature drive of tokamak instabilities Why negative magnetic shear is good Jenko & Dorland s surprising prediction of significant turbulence driven by Electron Temperature Gradient (ETG) Measurements of electron-gyro-scale fluctuations on NSTX and observations of internal transport barriers with negative magnetic shear consistent with ETG expectations. (supports Jenko & Dorland prediction) Initial nonlinear GYRO simulations, working toward detailed comparisons with microwave scattering measurements Multiple electron transport processes may be important and are being investigated: ETG, TEM (Trapped-Electron Mode), Microtearing (Wong PRL07), GAE (high frequency Global Alfven Eigenmode) (Stutman PRL 09). Focus on ETG here. NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 6

Initial Nonlinear ETG Turbulence Simulations: Simulating NSTX electron turbulence is challenging. Goal: detailed GYRO simualtions w/ synthetic diagnostic comparisons with high-k microwave scattering measurements Global simulations show ETG-driven turbulence in this RFonly discharge: ExB shearing has little effect (unlike case in Smith et al PRL 2009). Collisions have little effect (unlike case in Roach et al PPCF 2009). Magnetic perturbations have small effect. ETG can account for half of measured heat flux. Reversed magnetic shear appears to control turbulence. Transport predictions indicate long wavelength (TEM) turbulence may be important. NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 7

1.Intuitive pictures of gyrokinetic turbulence, & how to reduce it (many of these insights developed with gyrofluid simulations in 1990 s, but gyrokinetics needed for better accuracy.)

Stable Pendulum Unstable Inverted Pendulum (rigid rod) L L g M F=Mg ω=(g/l) 1/2 Density-stratified Fluid ρ=exp(-y/l) ω= (-g/ L ) 1/2 = i(g/ L ) 1/2 = iγ Instability Inverted-density fluid Rayleigh-Taylor Instability ρ=exp(y/l) stable ω=(g/l) 1/2 Max growth rate γ=(g/l) 1/2

Bad Curvature instability in plasmas Inverted Pendulum / Rayleigh-Taylor Instability Top view of toroidal plasma: Growth rate: Similar instability mechanism in MHD & drift/microinstabilities R plasma = heavy fluid 1/L = p/p in MHD, combination of n & T in drift-wave/microinstabilities. B = light fluid g eff = v2 R centrifugal force

The Secret for Stabilizing Bad-Curvature Instabilities Twist in B carries plasma from bad curvature region to good curvature region: Unstable Stable Similar to how twirling a honey dipper can prevent honey from dripping.

These physical mechanisms can be seen in gyrokinetic simulations and movies Unstable bad-curvature Stable side, smaller eddies side, eddies point out, direction of effective gravity particles quickly move along field lines, so density perturbations are very extended along fields lines, which twist to connect unstable to stable side

Movie http://fusion.gat.com/theory/images/3/35/d3d.n16.2x_0.6_fly.mpg from http://fusion.gat.com/theory/gyromovies shows contour plots of density fluctuations in a cut-away view of a GYRO simulation (Candy & Waltz, GA). This movie illustrates the physical mechanisms described in the last few slides. It also illustrates the important effect of sheared flows in breaking up and limiting the turbulent eddies. Long-wavelength equilibrium sheared flows in this case are driven primarily by external toroidal beam injection. (The movie is made in the frame of reference rotating with the plasma in the middle of the simulation. Barber pole effect makes the dominantly-toroidal rotation appear poloidal..) Short-wavelength, turbulent-driven flows also play important role in nonlinear saturation. Sheared Zonal flows

Bad Curvature instability in plasmas Inverted Pendulum / Rayleigh-Taylor Instability Top view of toroidal plasma: Growth rate: Similar instability mechanism in MHD & drift/microinstabilities R 1/L = p/p in MHD, combination of n & T in drift-wave/microinstabilities.

Spherical Torus has improved confinement and pressure limits (but less room in center for coils)

Rosenbluth-Longmire picture

Can repeat this analysis on the good curvature side & find it is stable. (Leave as exercise.) Rosenbluth-Longmire picture

Even if MHD stable, can drive drift waves ( microinstabilities ) at small scales by including FLR effects (electron pressure) in Ohm s law, which allow plasma to slip through magnetic field γ local ~ (k y ρ ) v t / (R L) 1/2 Including Landau-damping / phase-mixing from perpendicular drifts: Gives instability if R/L > O(1) γ net ~ γ local - C k y v drift

Simple picture of reducing turbulence by negative magnetic shear Particles that produce an eddy tend to follow field lines. Reversed magnetic shear twists eddy in a short distance to point in the ``good curvature direction''. Locally reversed magnetic shear naturally produced by squeezing magnetic fields at high plasma pressure: ``Second stability'' Advanced Tokamak or Spherical Torus. Shaping plasma (elongation and triangularity) can change local shear Fig. from Antonsen, Drake, Guzdar et al. Phys. Plasmas 96 Kessel, Manickam, Rewoldt, Tang Phys. Rev. Lett. 94 Advanced Tokamaks & Stellarators

Negative magnetic shear twists radial eddies away from curvature drive ŝ=r/q (dq/dr) Antonsen [PoP 3,2221,(1996)] showed pictorially how negative magnetic shear stabilizes ballooning type modes and simulation results showing the breaking up of radially extended streamer structures Negative shear rotates radially extended streamers such that they are no longer aligned with the curvature drive

Improved Stellarators Being Studied Naturally has stabilizing effect of negative magnetic shear. Magnetic field twist and shear provided by external coils, not plasma currents. More stable? Computer optimized designs much better than 1950-60 slide rules? Quasi-toroidal symmetry allows plasma to spin toroidally: shear flow stabilization as good as a tokamak? National Compact Stellarator expt. (NCSX)

Jenko & Dorland found ETG turbulence >> ITG turbulence (in Gyro-Bohm units) Conventional wisdom had been χ e / χ gyrobohm,e ~ χ i / χ gyrobohm,i ETG Which would cause χ e << χ i χ gyrobohm v t L ρ2 ct eb ρ L ITG (Dorland & Jenko 2000, see also Jenko & Dorland 2002: with larger box, Lx=512 ρ, report e = 13)

ETG eddies are radially extended streamers High ETG transport relative to ITG transport theoretically understood as due to difference in adiabatic response for ions vs. electrons ==> reduces ETG zonal flows ==> ETG streamers get to higher velocity and are more elongated. (Rogers & Dorland, Jenko & Dorland 2000, 2002, etc.) (Jenko & Dorland 2000)

Key ITG/ETG Difference: different adiabatic response to zonal flows ITG turbulence, adiabatic electron response: electrons don t respond to zonal flows (k =0, pure E r ). since electrons are adiabatic because k v te >> ETG turbulence, adiabatic ion response: Ions do shield zonal flows for ETG Since ions are adiabiatic because k ρ i >> 1. zonal flows --> streamers elongate --> transport Detailed secondary/tertiary instability analysis includes this, explains ITG/ETG saturation level differences, scalings (Rogers, Dorland, Jenko papers)

High-k microwave scattering diagnostic measures n e fluctuations at electron scale wavenumbers Plan View k ρ e 0.6 can be measured Multiple detection channels can measure fluctuations at multiples k values simultaneously 3cm Localized scattering volume, radial resolution ~3cm Mazzucato 08, D.R. Smith 09 PRLs

Electron-scale fluctuations in NSTX appear when linearly unstable to ETG measured gradient High-k location critical gradient Mazzucato et al PRL (2008) NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 28

Internal transport barriers form when magnetic shear is negative Peaked core gradients in electron and ion temperatures, and toroidal velocity Electron density gradient does not show much change with ITB NSTX profile diagnostics 51 channel CHarge Exchange Recombination Spectroscopy (CHERS) measures T i,v 30 channel Thomson scattering measures T e, n e 16 channel MSE ITB s not correlated w/ qmin or rational q. H. Yuh et al. APS Invited Talk 08

High-k scattering fluctuations are reduced inside e-itb k ρ e 0.2 Low high-k fluctuation amplitude seen in strongly reversed shear e-itb Weak negative shear shows higher high-k fluctuations despite lower T e gradients H. Yuh et al. APS Invited Talk 08

Measured gradients well above predicted ETG critical gradient GS2 and GYRO linear simulations performed across profile range Critical gradients for ETG instability greatly exceeded in e-itbs Low high-k fluctuation power measured in ITB Can negative magnetic shear suppressing transport caused by ETG? GS2 critical gradients Stiff T e profile 6MH H-modes w/ s~0 stuck at R/L Te < 9 GYRO critical gradients: single profile, s & Zeff(T e /T i ) variation H. Yuh et al. APS Invited Talk 08

Previous non-linear simulations has shown negative magnetic shear can reduce transport by ETG Negative magnetic shear suppression of ETG transport has been predicted by Jenko, Dorland [PRL 89, 225001 (2002)] Nonlinear gyrokinetic simulations showed negative magnetic shear effective at reducing ETG turbulence H. Yuh et al. APS Invited Talk 08

Previous non-linear simulations has shown negative magnetic shear can reduce transport by ETG Negative magnetic shear suppression of ETG transport has been predicted by Jenko, Dorland [PRL 89, 225001 (2002)] Nonlinear gyrokinetic simulations showed negative magnetic shear effective at reducing ETG turbulence Experimental data shows a similar reduction in χ e with low sensitivity to increasing temperature gradients H. Yuh et al. APS Invited Talk 08

Previous non-linear simulations has shown negative magnetic shear can reduce transport by ETG Negative magnetic shear suppression of ETG transport has been predicted by Jenko, Dorland [PRL 89, 225001 (2002)] Nonlinear gyrokinetic simulations showed negative magnetic shear effective at reducing ETG turbulence ZF v secondary Cowley v secondary Dotted lines: theoretical prediction of turbulent flux based on balancing: Primary instability growth rate ~ secondary instability growth rate ( mode amplitude) Rogers v ZF secondary suppressed by perpendicular adiabatic ion response, Cowley secondary unaffected

Some physical parameters for NSTX 124948 @ 300 ms Data from TRANSP/TORIC analysis of RF shot with NBI blips NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 35

NSTX ETG simulations are tough. TGYRO/GYRO/NEO/TGLF pull data from TRANSP Radial variation in profiles Higher resolution necessary for convergence Resolve electron gyroradius Small time step to get electron dynamics Increase velocity space, poloidal resolutions from standard Reduced mass ratio Gyrokinetic electrons; gyrokinetic (or adiabatic) ions Electrostatic or Electromagnetic (no parallel magnetic compressions yet) 52 million distribution points 60,000 150,000 CPU hours each at ORNL s Jaguar NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 36

Poloidal cross-section shows elongated streamers. ρ i /ρ e 20 (streamers will be smaller at real mass ra r/a=0.26 Radial direction (ignore outer ¼ buffer regions) r/a=0.49 NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 37

Anisotropic electron density power spectrum may have implications for experimental comparison. Logarithmic Electron Density Power Spectrum X X X Approx. high k locations: Ch. 3 Ch. 4 Ch. 5 NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 38

Good agreement with models at experimental ExB shear level. Injected Heat Flux NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 39

Great radial variation in heat flux predicted by GYRO and TGLF. Injected Heat Flux NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 40

TGYRO/TGLF can predict profiles fairly well (appear to be 2 bifurcated solutions possible) Using variation of Newton algorithm to solve nonlinear transport equations in a stable way: Measured T e NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 41

Small changes in temperature gradients lead to electron flux agreement. Exp. Level NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 42

Key Point: ETG may not be the only player. Nonlinear simulations of NSTX show ETG-driven turbulence. Can account for half of electron heat flux with experimental gradients. Reversed magnetic shear is important. Model saturation and overall transport levels TGLF suggests longer wavelength (TEM) may contribute. TEM linearly unstable above shearing rate for this RF shot. Small changes in gradients can lead to large changes in flux, at this moderate shear s = -0.14 TGYRO/TGLF (with TEM and ETG) converges to experimental flux. NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 43

Open Questions Can uncertainty account for electron heat flux? Mass ratio, ion dynamics, compressional magnetic perturbations Temperature, density, impurity concentration What is the role of long wavelength (TEM) turbulence? Can it make up the balance of electron heat flux? Does it alter the properties of the ETG turbulence? We need to simulate steady-state shots diagnosed at multiple wavelengths. BES System Coming FY2010-12 NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 44

Summary Mini-tutorial on bad-curvature drive of tokamak instabilities Why negative magnetic shear is good Jenko & Dorland s surprising prediction of significant turbulence driven by Electron Temperature Gradient (ETG) Measurements of electron-gyro-scale fluctuations on NSTX and observations of internal transport barriers with negative magnetic shear consistent with ETG expectations. (supports Jenko & Dorland prediction) Initial nonlinear GYRO simulations, working toward detailed comparisons with microwave scattering measurements Multiple electron transport processes may be important and are being investigated: ETG, TEM (Trapped-Electron Mode), Microtearing (Wong PRL07), GAE (high frequency Global Alfven Eigenmode) (Stutman PRL 09). Focus on ETG here. NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 45

Initial Nonlinear ETG Turbulence Simulations: Simulating NSTX electron turbulence is challenging. Goal: detailed GYRO simualtions w/ synthetic diagnostic comparisons with high-k microwave scattering measurements Global simulations show ETG-driven turbulence in this RFonly discharge: ExB shearing has little effect (unlike case in Smith et al PRL 2009). Collisions have little effect (unlike case in Roach et al PPCF 2009). Magnetic perturbations have small effect. ETG can account for half of measured heat flux. Reversed magnetic shear appears to control turbulence. Transport predictions indicate long wavelength (TEM) turbulence may be important. NSTX Nonlinear ETG (Hammett, Peterson, Yuh, ) July 20, 2010 46