Quantization dimension of probability measures supported on Cantor-like sets

Similar documents
The Hausdorff measure of a class of Sierpinski carpets

Optimal quantization for uniform distributions on Cantor-like sets

arxiv: v8 [stat.co] 28 Jan 2018

Bounds of Hausdorff measure of the Sierpinski gasket

Problem Set 2: Solutions Math 201A: Fall 2016

arxiv: v1 [cs.it] 8 May 2016

Topology Proceedings. COPYRIGHT c by Topology Proceedings. All rights reserved.

A NOTE ON CORRELATION AND LOCAL DIMENSIONS

Relationships between upper exhausters and the basic subdifferential in variational analysis

UNIFORMLY PERFECT ANALYTIC AND CONFORMAL ATTRACTOR SETS. 1. Introduction and results

Simultaneous Accumulation Points to Sets of d-tuples

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES

QUASI-LIPSCHITZ EQUIVALENCE OF SUBSETS OF AHLFORS DAVID REGULAR SETS

A BOREL SOLUTION TO THE HORN-TARSKI PROBLEM. MSC 2000: 03E05, 03E20, 06A10 Keywords: Chain Conditions, Boolean Algebras.

HYPERBOLIC DERIVATIVES AND GENERALIZED SCHWARZ-PICK ESTIMATES

The Polynomial Numerical Index of L p (µ)

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures

Correlation dimension for self-similar Cantor sets with overlaps

Stolz angle limit of a certain class of self-mappings of the unit disk

MATHS 730 FC Lecture Notes March 5, Introduction

Metric Spaces and Topology

v( x) u( y) dy for any r > 0, B r ( x) Ω, or equivalently u( w) ds for any r > 0, B r ( x) Ω, or ( not really) equivalently if v exists, v 0.

Entire functions defined by Dirichlet series

NOWHERE LOCALLY UNIFORMLY CONTINUOUS FUNCTIONS

Two dimensional exterior mixed problem for semilinear damped wave equations

Part III. 10 Topological Space Basics. Topological Spaces

Packing-Dimension Profiles and Fractional Brownian Motion

COMPLETELY INVARIANT JULIA SETS OF POLYNOMIAL SEMIGROUPS

Key words and phrases. Hausdorff measure, self-similar set, Sierpinski triangle The research of Móra was supported by OTKA Foundation #TS49835

Persistence and global stability in discrete models of Lotka Volterra type

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define

ARTICLE IN PRESS. J. Math. Anal. Appl. ( ) Note. On pairwise sensitivity. Benoît Cadre, Pierre Jacob

LECTURE 15: COMPLETENESS AND CONVEXITY

The Hausdorff measure of a Sierpinski-like fractal

Differential subordination related to conic sections

Boundedly complete weak-cauchy basic sequences in Banach spaces with the PCP

UNIFORMLY DISTRIBUTED MEASURES IN EUCLIDEAN SPACES

The small ball property in Banach spaces (quantitative results)

arxiv: v2 [math.fa] 27 Sep 2016


On the validity of the Euler Lagrange equation

PROBABLILITY MEASURES ON SHRINKING NEIGHBORHOODS

Wittmann Type Strong Laws of Large Numbers for Blockwise m-negatively Associated Random Variables

APPROXIMATE WEAK AMENABILITY OF ABSTRACT SEGAL ALGEBRAS

An Introduction to Complex Analysis and Geometry John P. D Angelo, Pure and Applied Undergraduate Texts Volume 12, American Mathematical Society, 2010

A NEW LINDELOF SPACE WITH POINTS G δ

SHARP INEQUALITIES FOR MAXIMAL FUNCTIONS ASSOCIATED WITH GENERAL MEASURES

arxiv: v1 [math.ds] 31 Jul 2018

Rate of convergence for certain families of summation integral type operators

Natural boundary and Zero distribution of random polynomials in smooth domains arxiv: v1 [math.pr] 2 Oct 2017

Introduction to Hausdorff Measure and Dimension

l(y j ) = 0 for all y j (1)

On Bank-Laine functions

PERIODS IMPLYING ALMOST ALL PERIODS FOR TREE MAPS. A. M. Blokh. Department of Mathematics, Wesleyan University Middletown, CT , USA

NOTIONS OF DIMENSION

Topological properties of Z p and Q p and Euclidean models

ON SPACES IN WHICH COMPACT-LIKE SETS ARE CLOSED, AND RELATED SPACES

A derivative-free nonmonotone line search and its application to the spectral residual method

JORDAN CONTENT. J(P, A) = {m(i k ); I k an interval of P contained in int(a)} J(P, A) = {m(i k ); I k an interval of P intersecting cl(a)}.

functions as above. There is a unique non-empty compact set, i=1

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

Uniquely Universal Sets

Multiple points of the Brownian sheet in critical dimensions

DENSELY k-separable COMPACTA ARE DENSELY SEPARABLE

Estimates for probabilities of independent events and infinite series

An Asymptotic Property of Schachermayer s Space under Renorming

ORBITAL SHADOWING, INTERNAL CHAIN TRANSITIVITY

PACKING-DIMENSION PROFILES AND FRACTIONAL BROWNIAN MOTION

SEPARABILITY AND COMPLETENESS FOR THE WASSERSTEIN DISTANCE

Linear Algebra and its Applications

arxiv: v2 [math.ca] 4 Jun 2017

The Drazin inverses of products and differences of orthogonal projections

Measures and Measure Spaces

Solutions to Tutorial 8 (Week 9)

Maths 212: Homework Solutions

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries

Observer design for a general class of triangular systems

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

Estimates for derivatives of holomorphic functions in a hyperbolic domain

arxiv: v2 [math.ca] 10 Apr 2010

Nonhomogeneous linear differential polynomials generated by solutions of complex differential equations in the unit disc

Research Article Frequent Oscillatory Behavior of Delay Partial Difference Equations with Positive and Negative Coefficients

AW -Convergence and Well-Posedness of Non Convex Functions

Packing Measures of Homogeneous Cantor Sets

Covering an ellipsoid with equal balls

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

IGNACIO GARCIA, URSULA MOLTER, AND ROBERTO SCOTTO. (Communicated by Michael T. Lacey)

Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou

Local semiconvexity of Kantorovich potentials on non-compact manifolds

On Antichains in Product Posets

A note on fixed point sets in CAT(0) spaces

Houston Journal of Mathematics. c 2008 University of Houston Volume 34, No. 4, 2008

Chapter 2 Metric Spaces

Problem set 1, Real Analysis I, Spring, 2015.

arxiv:math/ v1 [math.fa] 26 Oct 1993

On Semicontinuity of Convex-valued Multifunctions and Cesari s Property (Q)

arxiv: v1 [math.na] 9 Feb 2013

ON A PROBLEM RELATED TO SPHERE AND CIRCLE PACKING

From now on, we will represent a metric space with (X, d). Here are some examples: i=1 (x i y i ) p ) 1 p, p 1.

Exercises from other sources REAL NUMBERS 2,...,

Transcription:

J. Math. Anal. Appl. 338 (2008) 742 750 Note www.elsevier.com/locate/jmaa Quantization dimension of probability measures supported on Cantor-like sets Sanguo Zhu Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074, PR China Received 13 October 2006 Available online 22 May 2007 Submitted by M. Laczkovich Abstract Let μ be an arbitrary probability measure supported on a Cantor-like set E with bounded distortion. We establish a relationship between the quantization dimension of μ and its mass distribution on cylinder sets under a hereditary condition. As an application, we determine the quantization dimensions of probability measures supported on E which have explicit mass distributions on cylinder sets provided that the hereditary condition is satisfied. 2007 Elsevier Inc. All rights reserved. Keywords: Quantization dimension; Cantor-like sets; Bounded distortion; Hereditary condition 1. Introduction The quantization problem consists in studying the L r -error induced by the approximation of a given probability measure with discrete probability measures of finite supports. This problem originated in information theory and some engineering technology. Its history goes back to the 1940s (cf. [1,6,12,13]). Graf and Luschgy studied this problem systematically and gave a general mathematical treatment of it (cf. [3]). Two important objects in the quantization theory are the quantization coefficient and the quantization dimension. Let μ be a Borel probability measure on R d and let 0 <r<.thenth quantization error of μ of order r is defined by { } V n,r (μ) = inf min x a α a r dμ(x): α R d, card(α) n. (1) If the infimum in (1) is attained at some α R d with card(α) n, we call α an n-optimal set of μ of order r. The collection of all the n-optimal sets of order r is denoted by C n,r (μ). The upper and lower quantization dimension of μ of order r are defined by D r (μ) := lim sup r log n log V n,r (μ) ; D r(μ) := lim inf r log n log V n,r (μ). E-mail address: sgzhu2006@163.com. 0022-247X/$ see front matter 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2007.05.004

S. Zhu / J. Math. Anal. Appl. 338 (2008) 742 750 743 If D r (μ), D r (μ) coincide, we call the common value the quantization dimension of μ of order r and denote it by D r (μ). In recent years, the quantization problem for self-similar distributions have been extensively studied. Let {f 1,...,f N } be an iterated function system of contractive similitudes on R d with contraction ratios c 1,...,c N. The corresponding self-similar set refers to the unique non-empty compact set E satisfying E = N i=1 f i (E). The self-similar measure associated with {f 1,...,f N } and a given probability vector (p 1,...,p N ) is the unique Borel probability measure satisfying μ = N i=1 p i μ fi 1. We say that {f 1,...,f N } satisfies the strong separation condition if f i (E), 1 i N, are pairwise disjoint. We say that {f 1,...,f N } satisfies the open set condition if there exists a non-empty open set U such that f i (U) U for all i = 1,...,N and f i (U) f j (U) = for any pair i, j with 1 i j N. Under the open set condition, Graf and Luschgy (cf. [2,4]) proved that the quantization dimension of μ exists and equals s r which is the solution of the following equation: N ( pi ci r ) sr sr +r = 1. i=1 The above result was extended by Lindsay and Mauldin to the F -conformal measures associated with finitely many conformal maps (cf. [10]). Pötzelberger showed that, if the strong separation condition is satisfied and the corresponding vector (log(p 1 c1 r),...,log(p N cn r )) is non-arithmetic, the quantization coefficient of a self-similar measure exists (cf. [11]). By using different methods, Graf and Luschgy extended this result to the cases where only the open set condition is satisfied (cf. [5, Theorem 4.1]). In this paper, we study the quantization dimensions of arbitrary probability measures μ supported on certain Cantorlike sets under a hereditary condition. We will establish a relationship between the quantization dimension of μ and its distribution on cylinders. This generalizes Graf and Luschgy s result on the quantization dimension of self-similar distributions. As an application, we determine the quantization dimension of the product measures supported on the Cantor-like sets provided that a hereditary condition is satisfied. The paper is organized as follows. In the next section, we give some definitions and notations. In Section 3, we define some separation conditions and a hereditary condition and then state our main theorem. In Section 4, we first establish some lemmas, on the basis of these lemmas, we give the proof of our main result. The last section is devoted to the application to product measures. 2. Definitions and notations Let (n k ) be a sequence of integers with n k 2 for all k 1. Let Ξ 0 denote the set containing only the empty word. We define n Ω k := {1, 2,...,n k }, Ξ n := Ω k, Ξ := Ω k, Ξ := Ξ k. k=1 For σ = (σ (1),...,σ(n)) Ξ n, we call the number n the length of σ and denote it by σ. For any σ Ξ Ξ with σ n, we write σ n := ( σ(1),...,σ(n) ). If σ,τ Ξ and σ τ, σ = τ σ, we call σ a predecessor of τ and denote this by σ τ. The empty word is a predecessor of any finite or infinite word. We say σ,τ are incomparable if we have neither σ τ nor τ σ. A finite set Γ Ξ is called a finite anti-chain if any two words σ, τ in Γ are incomparable. A finite anti-chain Γ is called maximal if any word σ Ξ has a predecessor in Γ.Forn 2, σ = (σ (1),..., σ (n)) Ξ n and i Ω n+1, we define σ := σ n 1, σ i = ( σ(1),...,σ(n),i ). Let f kj, 1 j n k,k 1, be contractive similitudes on R d of contraction ratios 0 <c kj < 1. We assume that {f kj } satisfies the open set condition: there exists a bounded non-empty open set V such that for k 1 and 1 j n k we have f kj (V ) V and f ki (V ) f kj (V ) = for 1 i j n k. Set k=1 f σ := f 1σ(1) f nσ (n), c σ := c 1σ(1) c nσ (n), σ Ξ n. k=1

744 S. Zhu / J. Math. Anal. Appl. 338 (2008) 742 750 Let V denote the closure of V in R d. We call the non-empty compact set E = f σ (V), k 1 σ Ξ k the Cantor-like set determined by {f kj }.Forσ Ξ k, we call the set E σ := f σ (V) a cylinder set of order k; forthe empty word φ, wetakee φ = V. The Hausdorff and packing dimension of this type of sets have been discussed in [7,8]. 3. Statement of the main theorem We will need the following three conditions, the first two of which is on the separation property of the Cantor-like set and the third is on the mass distribution of a given probability measure. (a) Bounded distortion (BD): we say that {f kj } satisfies the bounded distortion property if c kj c>0 for all 1 j n k and all k 1. (b) Extra Strong Separation Condition (ESSC): for k 0 and σ Ξ k, we define Λ(σ ) := {τ Ξ k+1 : σ τ}; we say that {f kj } satisfies the extra strong separation condition if there exists a constant β>0 such that for any σ Ξ Ξ 0,wehave min { dist(e τ,e ρ ): τ,ρ Λ(σ ) } β max { E τ : τ Λ(σ ) }, (2) where A denotes the diameter of a set A and E σ = f σ (V). (c) Hereditary Condition (HC): Let μ be a probability measure supported on the Cantor-like set E; we say that μ satisfies the hereditary condition if (I) for any σ Ξ Ξ 0 with μ(e σ )>0, there exist at least two distinct words τ,ρ Λ(σ ) with μ(e τ ), μ(e ρ )>0; (II) there exists a constant 0 <p<1 which is independent of σ such that for all τ Λ(σ ) with μ(e τ )>0, we have μ(e τ ) pμ(e σ ). Before we state our main theorem, we need to give some more definitions and notations. For σ Ξ, we define := μ(e σ )c r σ. Set l := min { μ(e i )c r 1i : μ(e i)>0 }, where E i = f 1i (V),1 i n 1. For each n 1, we define Γ n := {σ Ξ : h ( σ ) ln } >h(σ). (3) The set Γ n is crucial in the calculation of the quantization dimension. We remark that the definition of Γ n is motivated by Graf and Luschgy s work on the quantization for self-similar distributions (cf. [4]). For each n N, according to the definition of l, thesetγ n is non-empty; and for any σ Γ n,bythe(hc),wehave l/n h ( σ ) = μ(e σ )cσ r μ(e σ ) (1 p) σ 2. This means σ 2 + log(l/n)/ log(1 p) =: K(n) and Γ n is a finite set. Moreover, for each n, Γ n is a finite antichain, but Γ n may fail to be a finite maximal anti-chain since, in general, μ(e σ ) = 0 is possible. Let d n,r, n 1 and s, s be defined by ( ) dn,r dn,r +r = 1; σ Γ n s := lim sup d n,r, s := lim inf d n,r. (4) By considering the continuous function g(t) := σ Γ n () t, one easily see that the numbers d n,r, n 1areall well defined. We are now in the position to state our main result. Theorem 1. Let E be the Cantor-like set determined by {f kj } which satisfies the conditions (BD) and (ESSC). Let μ be a probability measure supported on E satisfying the condition (HC). Then we have D r (μ) = s, D r (μ) = s, where s and s are as defined in (4).

S. Zhu / J. Math. Anal. Appl. 338 (2008) 742 750 745 4. Main results Throughout this section, f kj,1 j n k, k 1 are contractive similitudes with contraction ratios c kj satisfying the conditions (BD) and (ESSC); E denotes the Cantor-like set determined by {f kj } and μ is an arbitrary probability measure supported on E satisfying the condition (HC). Let [x] denote the largest integer less than or equal to x. We begin with the following simple lemma which is an immediate consequence of the definitions. Lemma 2. (See [14, Lemma 6].) Let l,ζ,ξ > 0.Forφ(n):= [ζ(n/l) ξ ], we have D r (μ) = lim sup log V φ(n),r (μ), Proof. By the definition, it is easy to see that D r (μ) = lim inf r log([n/2]) = lim inf log V [n/2],r (μ) D r(μ) = lim inf Now let (n i ) be an arbitrary subsequence of N. Weset [ 1/ξ ] [ 1/ξ ] ln i ln i W i := ζ 1/ξ, Z i := ζ 1/ξ + 1. Then for large i, wehave n i 2 ξ+1 φ(w i) n i, log V φ(n),r (μ). r log n log V [n/2],r (μ). (5) n i 2 φ(z i) 2 ξ+1 n i. (6) By (5), (6) and the definition of the quantization dimension, one easily gets D r (μ) lim sup log V φ(n),r (μ), The reverse inequalities are clear. D r(μ) lim inf log V φ(n),r (μ). Let Γ n be as defined in (3). For σ Γ n, it could happen that h(σ ) l/n but = 0. This will bring us much inconvenience when considering the quantization dimension. For this reason, we need to pick out those words σ Γ n with positive μ-measure, i.e., for each n 1, we set Γ n := { σ Γ n : μ(e σ )>0 }. Let (A) ɛ denote the ɛ-neighborhood of a set A. Forα C m,r (μ) and, we define α σ := α (E σ ) β Eσ /8. The following lemma will be crucial in the proof of the main theorem. It is a generalization of [14, Lemma 9]. Lemma 3. There exists a constant L 1 such that for any m card( Γ n ), α C m,r (μ) and all we have card(α σ ) L. Proof. Let c>0 be as in the condition (BD). We set C = pc r and let M be a constant with M r > 2/C. Then for, by (HC) and (BD), we have = μ(e σ )cσ r pcr μ(e σ )cσ r = Ch ( σ ). (7) By the condition (ESSC), for any distinct words σ,τ Ξ,wehave (E σ ) β Eσ /4 (E τ ) β Eτ /4 =. By estimating the volumes, we know that there exist two constants L 1,L 2 1 which are independent of σ, τ such that (E σ ) β Eσ /4 can be covered by L 1 closed balls with radii β E σ /(8M) and E τ can be covered by L 2 closed balls with radii β E τ /(8M). Indeed, we may take

746 S. Zhu / J. Math. Anal. Appl. 338 (2008) 742 750 L 1 := [( 16Mβ 1 + 8M + 1 ) d], L2 := [( 16Mβ 1 + 1 ) d]. Set L := L 1 + L 2. Suppose card(α σ )>Lfor some. Then there exists some τ Γ n such that card(α τ ) = 0 since card(α) card( Γ n ). We assume that b 1,...,b L α σ.letq 1,...,q L1 be the centers of the L 1 closed balls with radii β E σ /(8M) which cover (E σ ) β Eσ /4. Lete 1,...,e L2 be the centers of the L 2 closed balls with radii β E τ /(8M) which cover E τ. Set γ := ( α \{b 1,...,b L } ) {q 1,...,q L1,e 1,...,e L2 }. Then using the condition (HC) we have min x a α a r dμ(x) βr E τ r 8 r μ(e τ ) Cβr V r 8 r h ( τ ) Cβr V r l 8 r. n E τ On the other hand, by the definition of γ,wehave min x c γ c r dμ(x) βr E σ r 8 r M r μ(e σ ) + βr E τ r 8 r M r μ(e τ ) = βr V r ( ) Cβ r V r l + h(τ) < 8 r M r 8 r. n E σ E τ Combining the above inequalities, we have min x a α a r dμ(x) > min x c γ c r dμ(x). (8) E σ E τ E σ E τ For any x E \ (E σ E τ ) and for any a α σ, we denote by B(a,β E σ /8) the closed ball centered at a and of radius β E σ /8. Let y be the intersection of the surface of B(a,β E σ /8) and the line determined by x and a. Then we have y (E σ ) β Eσ /4. Recall that (E σ ) β Eσ /4 is covered by L 1 balls of radii β E σ /(8M) centered at q j,1 j L 1. Hence there exists some point q i such that y B(q i,β E σ /(8M)). By the triangular inequality, we have x q i x y +β E σ /(8M) < x y +β E σ /8 = x a. From the above inequalities, we deduce min x a min x q i. a α σ 1 i L 1 Observing the difference between α and γ, this implies min x a min a α c γ for all x E \ (E σ E τ ). (9) Hence (8) and (9) yields V m,r (μ) = min a α a r dμ(x) > min c γ c r dμ(x) = min c γ c r dμ(x). E σ E σ This contradicts the optimality of α. The lemma follows. Lemma 4. Let L 1 be an integer and α an arbitrary subset of R d with cardinality L. Then there exists a constant D>0 such that for any σ Ξ with μ(e σ )>0, we have min x a α a r dμ(x) D. (10) E σ Proof. We assume that σ Ξ k. Choose j 1 such that 2 j > L. Set Λ j (σ ) := {τ Ξ k+j : σ τ}. By the condition (HC), there exist τ (i) Λ j (σ ), 1 i L + 1 such that

S. Zhu / J. Math. Anal. Appl. 338 (2008) 742 750 747 μ(e τ (i))>0, 1 i L + 1. Suppose that for some a α there exist 1 i 1 i 2 L + 1 such that dist(a, E τ (i h ))< β 2 min{ E τ,τ Λ j (σ ) }, h= 1, 2. (11) Then by the triangular inequality we have dist(e τ (i 1 ),E τ (i 2 ))<βmin { E τ,τ Λ j (σ ) }. This contradicts the condition (ESSC). Therefore, for each a α there is at most one cylinder set E τ, τ Λ j (σ ) such that (11) holds. On the other hand, we have card(α) < L + 1; thus there exists some E τ (i), 1 i L + 1 such that μ(e τ (i))>0, min dist(a, E a α τ (i)) β 2 min{ E τ,τ Λ j (σ ) }. (12) Using (12) and the conditions (ESSC) and (HC), we deduce E σ min x a α a r dμ(x) E τ (i) min x a α a r dμ(x) μ(e τ (i))2 r β r( min { E τ,τ Λ j (σ ) }) r p j μ(e σ )2 r β r c jr E σ r =: D, where D = 2 r p j β r c jr V r. This completes the proof of the lemma. Proof of Theorem 1. Let S>d r. Then d n,r <Sfor large n. Letc>0 be as in the condition (BD) and let C = pc r. By (3) and (4), we have 1 = ( ) dn,r r+dn,r C dn,r r+dn,r ( ( )) dn,r h σ r+dn,r C dn,r r+dn,r ( ( h σ )) ( ) S r+s S l r+s C card( Γ n ), n Hence we have card( Γ n ) C 1 (n/l) r+s S.Letφ(n):= [C 1 (n/l) r+s S ]. For each, we choose an arbitrary point of E σ and denote by α the set of these points. Note that φ(n) card( Γ n ). We deduce V φ(n),r (μ) E σ r min x a α a r dμ(x) μ(e σ ) E σ r C 1 (n/l) σ Γ n where C r = C 1 V r l r+s. Thus by Lemma 2, we have D r (μ) = lim sup S. log V φ(n),r (μ) S r+s l/n V r =: C r n S+r r, By the arbitrariness of S, wehaved r (μ) d r. One can show D r (μ) d r in a similar manner by considering subsequences. Next we show the reverse inequalities. Let s<d r. Then s<d n,r for large n. By (3) and (4) we have 1 = ( ) dn,r r+dn,r ( ) s ( ) s r+s l r+s card( Γ n ). n Hence card( Γ n ) (n/l) s r+s.letα C [(n/l) s r+s ],r (μ). For each,letw 1,...,w L2 be the centers of the L 2 closed balls with radii β E σ /(8M) which cover E σ and define α σ := α σ {w 1,...,w L2 }. Thus for and all x E σ,wehave min x a min x a. a α a α σ By Lemma 3, card( α σ ) L + L 2 =: L. By Lemma 4 and (7), we deduce

748 S. Zhu / J. Math. Anal. Appl. 338 (2008) 742 750 V [(n/l) s r+s ],r (μ) = E σ min x a α a r dμ(x) E σ DC(n/l) r+s s l/n =: C1 r n r+s r, where C1 r = DClr/(s+r). Thus by Lemma 2, for φ(n):= [(n/l) r+s s ], wehave D r (μ) = lim inf s. log V φ(n),r (μ) min x a r dμ(x) D a α σ By the arbitrariness of s, we finally get D r (μ) d r. The inequality D r (μ) d r follows similarly by considering subsequences. Remark 5. As we mentioned above, our definition of the crucial set Γ n is motivated by Graf and Luschgy s work for self-similar measures. We note that Graf and Luschgy s method to get the lower bound of the quantization dimension is based on Hölder s inequality with exponent less than one and is dependent on the existence of the quantization dimension. As a result, their method is not applicable here. 5. Application to product measures In this section, we use Theorem 1 to determine the quantization dimension of the product measures supported on a Cantor-like set E which is determined by contractive similitudes f kj s of contraction ratios c kj,1 j n k, k 1. Let p kj,1 j n k, k 1 be positive real numbers satisfying inf min p kj > 0, k 1 1 j n k n k p kj = 1, k 1. (13) j=1 By Kolmogorov consistency theorem, there exists a unique probability measure μ supported on E such that μ(e σ ) = p 1σ(1) p nσ (n), σ = ( σ(1),...,σ(n) ) Ξ n. We call this measure the product measure on E associated with {p kj }. A special product measure is the uniform probability measure μ on E which assigns a weight (n 1 n k ) 1 to each of the cylinder sets of order k, i.e., μ(e σ ) = (n 1 n k ) 1, σ Ξ k. (14) For σ Ξ n,wesetp σ = p 1σ(1) p nσ (n).letd n,r, d r,d r be defined by ( pσ cσ r ) dn,r dn,r +r = 1, σ Γ n d r := lim inf d n,r, where Γ n is as defined in (3). Then we have d r := lim sup d n,r, Theorem 6. Let E be the Cantor-like set determined by {f kj } which satisfies the (BD) and (ESSC). Let μ be the product measure associated with {p kj } satisfying (13). Then D r (μ) = d r, D r (μ) = d r. In particular, if c kj c k for all k 1 and μ is the uniform probability measure on E, then D r (μ) = lim sup k log(n 1 n k ) log(c 1 c k ), D r(μ) = lim inf k log(n 1 n k ) log(c 1 c k ). Proof. Since (13) implies the (HC), the first part of the theorem follows immediately from Theorem 1. In the following we show the remaining part. Let μ be the uniform probability measure on E. We write s k,r := log(n 1 n k ) log(c 1 c k ), ξ := lim sup s k,r, k ξ := lim inf k s k,r. Let l = n 1 1 cr 1. For each n 1, there exists some k 1 such that (n 1 n k+1 ) 1 (c 1 c k+1 ) r <l/n (n 1 n k ) 1 (c 1 c k ) r. (15)

S. Zhu / J. Math. Anal. Appl. 338 (2008) 742 750 749 By (14), for σ Ξ k, = (n 1 n k ) 1 (c 1 c k ) r. Thus by (15), d n,r = s k+1,r for the above k. By Theorem 1, this implies D r (μ) ξ, D r (μ) ξ. On the other hand, for any k 2, there exists some n 1, such that l/(n + 1) (n 1 n k ) 1 (c 1 c k ) r <l/n. For this n,wehave (n 1 n k 1 ) 1 (c 1 c k 1 ) r n k ck r l/(n + 1) l/n. This implies Ξ k = Γ n and s k,r = d n,r for the above n. It follows that D r (μ) ξ,d r (μ) ξ. This completes the proof of the theorem which generalizes [9, Theorem 1.6(2)]. In the following, we give an example to illustrate Theorem 6. Example 7. Let f kj, p kj, j = 1, 2, k 1, be defined as follows: { x6 { if k = 1, x3 + 2 3 if k = 1, f k1 (x) = x f if k>1, k2 (x) = x + 1 1 if k>1, 6 1+2 k 3 1+2 k 3 { { 1+2 k 1 (1 + 2 r ) 1 if k = 1, (1 + 2 r ) 1 if k = 1, p k1 = p k2 = 1 (1 + 2 (1+2 k)r ) 1 if k>1, (1 + 2 (1+2 k)r ) 1 if k>1. Let E be the Cantor-like set on R determined by {f kj } and let μ be the product measure supported on E determined by {p kj }.Wehave D r (μ) = r log 2 r log 3 + log(1 + 2 r =: s. ) log 2 In fact, by our construction, we have p 11 c r 11 = p 12c r 12, p k1c r k1 = p k2c r k2 = ( p 11 c r 11) Ak, k 1, where A k = (1 + 2 r )(1 + 2 (1+2 k )r ) 1 3 2 kr. Thus for each n 1, we have Γ n = Ξ k for some k 1. For any σ Ξ k, we have = μ(e σ )c r σ = p 1σ(1) p kσ(k) c r 1σ(1) cr kσ(k) = ( p 11 c r 11 Let d n,r be the solution of the following equation: ( (1 2 k + 2 r ) ) k 1 dn,r dn,r +r k 3 kr A i = 1. i=1 k 1 ) k Using the fact that A k 1 (k ), we deduce lim n r d n,r = s. By Theorem 6, D r (μ) exists and equals s. Acknowledgment I thank the referee for some helpful comments and nice suggestions. References [1] J.A. Bucklew, G.L. Wise, Multidimensional asymptotic quantization with rth power distortion measures, IEEE Trans. Inform. Theory 28 (1982) 239 247. [2] S. Graf, H. Luschgy, The quantization of the Cantor distribution, Math. Nachr. 183 (1997) 113 133. [3] S. Graf, H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Math., vol. 1730, Springer-Verlag, 2000. [4] S. Graf, H. Luschgy, The quantization dimension of self-similar probabilities, Math. Nachr. 241 (2002) 103 109. i=1 A i.

750 S. Zhu / J. Math. Anal. Appl. 338 (2008) 742 750 [5] S. Graf, H. Luschgy, The point density measure in the quantization of self-similar probabilities, Math. Proc. Cambridge Philos. Soc. 138 (2005) 513 531. [6] R. Gray, D. Neuhoff, Quantization, IEEE Trans. Inform. Theory 44 (1998) 2325 2383. [7] S. Hua, On the dimension of generalized self-similar sets, Acta Math. Appl. Sin. 17 (4) (1994) 551 558. [8] S. Hua, W. Li, Packing dimension of generalized Moran sets, Progr. Natur. Sci. 6 (2) (1996) 148 152. [9] M. Kesseböhmer, S. Zhu, Stability of the quantization dimension and quantization for homogeneous Cantor measures, Math. Nachr. 280 (8) (2007) 866 881. [10] L.J. Lindsay, R.D. Mauldin, Quantization dimension for conformal function system, Nonlinearity 15 (1) (2002) 189 199. [11] K. Pötzelberger, The quantization error of self-similar distributions, Math. Proc. Cambridge Philos. Soc. 137 (2004) 725 740. [12] P.L. Zador, Asymptotic quantization error of continuous signals and the quantization dimension, IEEE Trans. Inform. Theory 28 (1982) 139 149. [13] P.L. Zador, Development and evaluation of procedures for quantizing multivariate distributions, PhD thesis, Stanford University, 1964. [14] S. Zhu, Quantization dimension for condensation systems, Math. Z., in press.