Background rejection techniques in Germanium 0νββ-decay experiments. ν=v

Similar documents
The GERmanium Detector Array

The GERDA Experiment:

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

L esperimento GERDA. GERDA - gruppo INFN. L Aquila, Congresso SIF, 30/09/2011. OUTLINE: GERDA Motivations GERDA Status GERDA Future plans

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik

Background Free Search for 0 Decay of 76Ge with GERDA

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

Results on neutrinoless double beta decay of 76 Ge from the GERDA experiment

Neutron Activation of 76Ge

The GERDA Neutrinoless double beta decay experiment

Neutrinoless Double Beta Decay for Particle Physicists

Experimental Searches for Neutrinoless Double-Beta Decays in 76-Ge Alan Poon

Status of the GERDA experiment

First results on neutrinoless double beta decay of 82 Se with CUPID-0

A Liquid Argon Scintillation Veto for the GERDA Experiment

Search for 0νββ-decay with GERDA Phase II

Cosmogenic background for the GERDA experiment. Luciano Pandola INFN, Laboratori del Gran Sasso, Italy

GERDA & the future of 76 Ge-based experiments

Two Neutrino Double Beta (2νββ) Decays into Excited States

MC Benchmarks for LAr Instrumentation in GERDA

Andrey Formozov The University of Milan INFN Milan

Double Beta Present Activities in Europe

Prospects for kev-dm searches with the GERDA experiment

Phase II upgrade of the Gerda experiment for the search of neutrinoless double beta decay

-> to worldwide experiments searching for neutrinoless double beta decay

The Gerda Experiment for the Search of Neutrinoless Double Beta Decay

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration

HEROICA: a test facility for the characterization of BEGe detectors for the GERDA experiment

Investigation and development of the suppression methods of the 42 K background in LArGe

Background and sensitivity predictions for XENON1T

Shielding Strategies. Karl Tasso Knöpfle MPI Kernphysik, Heidelberg

Neutron Activation of 74 Ge and 76 Ge

Results on neutrinoless double beta decay of 76 Ge from GERDA Phase I

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA

a step forward exploring the inverted hierarchy region of the neutrino mass

NEMO-3 latest results

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

Pulse Shape Analysis

Search for Neutrinoless Double Beta Decay in the GERDA Experiment

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

The Majorana Neutrinoless Double-Beta Decay Experiment

Majorana Double Beta Decay Search Project (Majorana Demonstrator)

Is the Neutrino its Own Antiparticle?

arxiv: v1 [nucl-ex] 20 Dec 2008

The search for neutrino-less double beta decay with LNGS: status and perspectives

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

Coincidence measurements for Gerda Phase II

E15. Background suppression in GERDA Phase II. and its study in the LARGE low background set-up

How can we search for double beta decay? Carter Hall University of Maryland

An active-shield method for the reduction of surface contamination in CUORE

Status of the AMoRE experiment searching for neutrinoless double beta decay of 100 Mo

Neutrinoless Double-Beta Decay

Background by Neutron Activation in GERDA

Status and Perspectives of the COBRA-Experiment

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016

Particle Physics: Neutrinos part II

LUCIFER. Marco Vignati INFN Roma XCVIII congresso SIF, Napoli, 21 Settembre 2012

Germanium detector test-stands at the Max Planck Institute for Physics and alpha interactions on passivated surfaces

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Neutrino Masses and Mixing

Status of the CUORE experiment at Gran Sasso

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

The CUORE Detector: New Strategies

DOUBLE BETA DECAY OF 106 Cd - EXPERIMENT TGV (Telescope Germanium Vertical) EXPERIMENT SPT (Silicon Pixel Telescope)

Yoann KERMAÏDIC PSeGe workshop

Studies of the XENON100 Electromagnetic Background

cryogenic calorimeter with particle identification for double beta decay search

Neutrinos. Why measure them? Why are they difficult to observe?

GERDA Status and Perspectives

Results from EXO 200. Journal of Physics: Conference Series. Related content PAPER OPEN ACCESS

Neutrinoless Double Beta Decay. Phys 135c Spring 2007 Michael Mendenhall

Particle Physics: Neutrinos part II

The NEXT-100 experiment for Neutrino-less Double Beta decay: Main features, Results from Prototypes and Radiopurity issues.

Study well-shaped germanium detectors for lowbackground

Background Modeling and Materials Screening for the LUX and LZ Detectors. David Malling Brown University LUX Collaboration AARM Meeting February 2011

The GERDA Phase II detector assembly

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min

Neutrino Physics. Neutron Detector in the Aberdeen Tunnel Underground Laboratory. The Daya Bay Experiment. Significance of θ 13

- The CONUS Experiment - COherent elastic NeUtrino nucleus Scattering

Hugon Christophe Université Aix-Marseille, CPPM, IN2P3/CNRS on behalf of the SuperNEMO collaboration. C. Hugon, rencontre du Vietnam 2017

Detectors for astroparticle physics

Pulse-shape shape analysis with a Broad-energy. Ge-detector. Marik Schönert. MPI für f r Kernphysik Heidelberg

PMT Signal Attenuation and Baryon Number Violation Background Studies. By: Nadine Ayoub Nevis Laboratories, Columbia University August 5, 2011

Quality Assurance. Purity control. Polycrystalline Ingots

arxiv: v1 [physics.ins-det] 23 Oct 2007

PROJECT STATUS AND PERSPECTIVES

Background simulations and shielding calculations

Double Beta Decay Committee to Assess the Science Proposed for a Deep Underground Science and Engineering Laboratory (DUSEL) December 14-15, 2010

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Is the Neutrino its Own Antiparticle?

Par$cle and Neutrino Physics. Liang Yang University of Illinois at Urbana- Champaign Physics 403 April 15, 2014

First tests of the big volume ultra low background gamma spectrometer

Scintillator phase of the SNO+ experiment

To Be or Not To Be: Majorana Neutrinos, Grand Unification, and the Existence of the Universe

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

XENONNT AND BEYOND. Hardy Simgen. WIN 2015 MPIK Heidelberg. Max-Planck-Institut für Kernphysik Heidelberg

Status of Cuore experiment and last results from Cuoricino

Latest Results from the OPERA Experiment (and new Charge Reconstruction)

Transcription:

Background rejection techniques in Germanium 0νββ-decay experiments n p ν=v n eep II. Physikalisches Institut Universität Göttingen Institutsseminar des Inst. für Kern- und Teilchenphysik,

Outline Neutrinos in the Standard Model / double beta-decay Experimental aspects of double beta-decay / GERDA Background and background rejection n R&D projects and implications ν=v n Conclusions p eep

Outline Neutrinos in the Standard Model / double beta-decay Experimental aspects of double beta-decay / GERDA Background and background rejection R&D projects and implications Conclusions

Outline Neutrinos in the Standard Model / double beta-decay Experimental aspects of double beta-decay / GERDA Background and background rejection R&D projects and implications Conclusions

Outline Neutrinos in the Standard Model / double beta-decay Experimental aspects of double beta-decay / GERDA Background and background rejection R&D projects and implications Conclusions

Neutrino oscillations Observation: disappearance of solar and atmospheric neutrinos Solution: neutrino mixing and oscillations Mass- and flavor (interaction) eigenstates are not the same νμ ντ flux (x106 cm-2 s-1) Oscillations depend on Δm2 finite neutrino mass νe flux (x106 cm-2 s-1)

Open questions What is the absolute mass scale of the neutrino? What is the neutrino hierarchy? What is the nature of the neutrino? Some mass scales: Top-quark ~ 175 GeV Tritium beta-decay mν < 2.2 ev Cosmology mν < 1.0 ev Double-beta decay mν 0.4 ev Z, W ~ 100 GeV Electron ~ 500 kev Neutrinos < 1 ev Structure formation

Open questions What is the absolute mass scale of the neutrino? What is the neutrino hierarchy? Mass2 What is the nature of the neutrino? ν2 ν1 ν3 Δm 2 21 Δm232 ν2 ν1 Δm221 normal (NH) -Δm232 e μ τ Δm221 = 8.1 10-5 ev2 ν3 Δm232 = 2.2 10-3 ev2 inverted (IH)

Open questions What is the absolute mass scale of the neutrino? What is the neutrino hierarchy? What is the nature of the neutrino? E. Majorana or ν ν P. Dirac ν=ν

Double beta-decay Rare nuclear transition (2nd order weak process): 2νββ: (Z, A) (Z+2, A) + 2 e- + 2 ν ΔL = 0 (T1/2 ~ 1021 y) 0νββ: (Z, A) (Z+2, A) + 2 e- ΔL = 2 (T1/2 > 1025 y) Majorana neutrino (Z, A) euei W eνi νi Uei W Process violates lepton number conservation (Z + 2, A) NUCLEAR PROCESS

Double beta-decay When does double beta-decay occur? Initial nucleus lighter than intermediate nucleus but heavier than final nucleus (single beta-decay forbidden) Even-even nuclei (binding energy) About 35 candidate isotopes A = 76 single β-decay 76 Ge 76As forbidden double β-decay 76 Ge 76Se allowed

Final state: Daughter nucleus (neglect recoil) Electrons Experimental aspects of double beta-decay I 0νββ 2νββ 2 electrons, 2 or 0 neutrinos n n p eν ν ep continous electron spectrum (Te1+Te2 ) / Qββ 0νββ-decay 2νββ-decay Search for a narrow line n p ν n eep line-shaped electron spectrum

Previous (germanium) experiments IGEX (CanFranc) Enriched Ge detectors Total exposure ~8.87 kg y No signal observed T1/2 > 1.57 1025 y Heidelberg-Moscow (INFN) Enriched Ge detectors Total exposure ~71.7 kg y T1/2 > 1.9 1025 y Part of collaboration: claim T = 1.2 1025 y

New experiments Requirements for new experiments: Good energy resolution (0νββ vs. 2νββ) High Q-value (0νββ scales with Q5) Low background in the ROI high Q-value Large target mass: high natural abundance or enrichment High signal efficiency Low overall background in the ROI Background units: counts / (kg kev y) around Qββ total mass

GERDA: Technical realization Clean-room Lock system Water tank (steel) Muon veto (Č) Cryostat (steel + Cu) Liquid argon Detector array

Physics potential / sensitivity Phase I: 18 kg germanium Phase III 20 kg y exposure 10-2 counts/(kg kev y) Phase II: Phase II 35 kg germanium 100 kg y exposure 10-3 counts/(kg kev y) Phase I Phase III: 500 kg germanium <10-3 counts/(kg kev y) A. Caldwell, KK, Phys. Rev. D 74 (2006) 092003

Sources of background Background: processes which cause energy deposition at Q-value

Sources of background Cosmic muons Rad. isotopes Neutrons (rock) Rad. isotopes Photons (far) Rad. isotopes Photons (near) Rad. isotopes Electrons Muon induced neutrons (l. Ar/N) Alphas in surface contaminations Cosmogenic production (detector)

Sources of background Cosmic muons Rad. isotopes Neutrons (rock) Rad. isotopes Photons (far) Rad. isotopes Photons (near) Rad. isotopes Electrons Muon induced neutrons (l. Ar/N) Alphas in surface contaminations Cosmogenic production (detector)

Sources of background Cosmic muons Rad. isotopes Neutrons (rock) Rad. isotopes Photons (far) Rad. isotopes Photons (near) Rad. isotopes Electrons Muon induced neutrons (l. Ar/N) Alphas in surface contaminations Cosmogenic production (detector)

Sources of background Cosmic muons Rad. isotopes Neutrons (rock) Rad. isotopes Photons (far) Rad. isotopes Photons (near) Rad. isotopes Electrons Muon induced neutrons (l. Ar/N) Alphas in surface contaminations Cosmogenic production (detector) Tl and 214Bi decays 208

Sources of background Cosmic muons Rad. isotopes Neutrons (rock) Rad. isotopes Photons (far)! Rad. isotopes Photons (near) Rad. isotopes Electrons Muon induced neutrons (l. Ar/N) Alphas in surface contaminations Cosmogenic production (detector)

Sources of background Cosmic muons Rad. isotopes Neutrons (rock) Rad. isotopes Photons (far)! Rad. isotopes Photons (near) Rad. isotopes Electrons Muon induced neutrons (l. Ar/N) Alphas in surface contaminations Cosmogenic production (detector)

Sources of background Cosmic muons Rad. isotopes Neutrons (rock) Rad. isotopes Photons (far)! Rad. isotopes Photons (near) Rad. isotopes Electrons Muon induced neutrons (l. Ar/N) Alphas in surface contaminations Cosmogenic production (detector)

Sources of background Cosmic muons Rad. isotopes Neutrons (rock) Rad. isotopes Photons (far)! Rad. isotopes Photons (near) Rad. isotopes Electrons Muon induced neutrons (l. Ar/N) Alphas in surface contaminations Cosmogenic production (detector) Pb on detector surface 210

Sources of background Cosmic muons Rad. isotopes Neutrons (rock) Rad. isotopes Photons (far)! Rad. isotopes Photons (near) Rad. isotopes Electrons Muon induced neutrons (l. Ar/N) Alphas in surface contaminations! Cosmogenic production (detector) ~3.3 atoms 60Co/(kg d) T1/2=5.3 y ~5.6 atoms 68Ge/(kg d) T1/2=271 d

Background rejection techniques

Background rejection strategies Purity: Reduce amount of radioactive isotopes Reduce amount of dangerous isotopes Example: Majorana electroformed copper Goal: < 0.3 μbq/kg 208Tl Achieved: < 2-4 μbq/kg 232Th

Background rejection strategies Shielding: Cosmic muons Steel/Water/Copper/Argon shell 1400 m ~ 3.800 m.w.e

Background rejection strategies Granularity: photon / electron separation Tracking of particles Detector array Segmentation NEMO COBRA MPI f. Physik, Munich GERDA

Background rejection strategies Analysis of the time structure of the detector response: Pulse shape analysis: pulse contains information on position of energy deposition Used e.g. in AGATA (gamma-ray tracking) MPI f. Physik, Munich

Background rejection strategies Active muon veto: Scintillator plates Water Cherenkov Detector reduction by 2 orders of magnitude Univ. of Tübingen

Background rejection strategies Active veto using scintillation light from liquid Argon: Equip inner vessel with PMT Photon can scatter (energy deposition inside the Ge-detectors and liquid Argon) MPI f. Kernphysik, Heidelberg

Pu rit y Sh ie ld Tr. ac k. PS A Ve to Ti m in l. g A r Sources of background Cosmic muons Rad. isotopes Neutrons (rock) Rad. isotopes Photons (far) Rad. isotopes Photons (near) Rad. isotopes Electrons Muon induced neutrons (l. Ar/N) Alphas in surface contaminations Cosmogenic production (detector)

Pu rit y Sh ie ld Tr. ac k. PS A Ve to Ti m in l. g A r Sources of background Cosmic muons Rad. isotopes Neutrons (rock) Rad. isotopes Photons (far) Rad. isotopes Photons (near) Rad. isotopes Electrons Muon induced neutrons (l. Ar/N) Alphas in surface contaminations Cosmogenic production (detector)

Techniques to distinguish electrons from photons

Electron/photon discrimination 0νββ-decay has two electrons (only) in the final state Photons with MeV-energies mostly Compton-scatter Sum of the kinetic energies at Q-value (2 039 kev for 76Ge) Electrons of O(1) MeV have a Range of photons O(1-5) cm in germanium Multi-site events range of ~ 1 mm in Ge Single-site events Aim: Distinguish between single-site (electrons) and multi-site events (photons) Single crystal Range log(r [mm]) I. Abt et al. Nucl.Instrum.Meth.A 570 (2007) 479

Electron/photon discrimination 0νββ-decay has two electrons (only) in the final state Photons with MeV-energies mostly Compton-scatter Sum of the kinetic energies at Q-value (2 039 kev for 76Ge) Electrons of O(1) MeV have a Range of photons O(1-5) cm in germanium Multi-site events range of ~ 1 mm in Ge Single-site events Aim: Distinguish between single-site (electrons) and multi-site events (photons) Segm. Single crystal Range log(r [mm]) I. Abt et al. Nucl.Instrum.Meth.A 570 (2007) 479

Electron/photon discrimination 0νββ-decay has two electrons (only) in the final state Photons with MeV-energies mostly Compton-scatter Sum of the kinetic energies at Q-value (2 039 kev for 76Ge) Electrons of O(1) MeV have a Range of photons O(1-5) cm in germanium Multi-site events range of ~ 1 mm in Ge Single-site events Aim: Distinguish between single-site (electrons) and multi-site events (photons) PSA Segm. Single crystal Range log(r [mm]) I. Abt et al. Nucl.Instrum.Meth.A 570 (2007) 479

Analysis chain I: energy cut Simulation 50 kg y, 10-3 counts/(kg kev y) Region of interest (ROI) Require energy 2 039 ± 5 kev

Analysis chain II: crystal anti-coincidence detectors electrons photons Select events with one crystal hit

Analysis chain III: segment anti-coincidence segments electrons photons Select events with one segment hit

Analysis chain IV: pulse shape analysis multiple interactions Neural network analysis

Example: 0νββ and Co-60 MC simulation of 21 detectors with 18-fold segmentation I. Abt et al. Nucl.Instrum.Meth.A 570 (2007) 479 I. Abt et al. Nucl.Instrum.Meth.A 570 (2007) 479

Test stand program at MPI Munich Prototype development Test operation of n-type and p-type detectors inside cryoliquid Test segmentation schemes Monte Carlo verification

Siegfried I. Abt et al. Nucl.Instrum.Meth.A 577 (2007) 574 18-fold segmented n-type detector Pre-amplifiers and filters Pre-amplifiers and filters 60 l dewar with ln2

Siegfried I. Abt et al. Nucl.Instrum.Meth.A 577 (2007) 574 18-fold segmented n-type detector 3-fold segment in height 6-fold segmented in azimuthal angle

Data to Monte Carlo comparison (Co-60) Channel ID I. Abt et al. Nucl.Instrum.Meth. A 583 (2007) 332 Core electrode spectrum (60Co) Average deviation ~5% Some features not in MC Substructure due to drift anisotropy of charge carriers Effective model in MC

Segment (anti-)coincidence I. Abt et al. Nucl.Instrum.Meth. A 583 (2007) 332 SFS = N (all) / N (single segment) study effective segmentation Geometry dependent Data and MC agree within <5% Add segment energies to 18-fold segmentation best

Pulse shape analysis DEP Tl-208 (SSE) Methods I. Abt et al. Eur.Phys.J. C 52 (2007) 19 I. Abt et al. Eur.Phys.J. C 54 (2008) 425 Library method PSA: Neural network output Likelihood method Distinction between single- Neural network Bi-212 photons (MSE) site and multi-site events

Example: Th-228 spectrum DEP Tl-208 Core energy spectrum Correct identification of final Segmentation reduces states Compton-background in ROI Bi-212 photons PSA confirms signal

Implications for GERDA

Monte Carlo simulation GEANT4-based Monte Carlo simulation (MaGe): Idealized Phase II setup 21 18-fold segmented detectors Liquid nitrogen (original proposal) (Hopefully) complete list of background components Impurities from screening experiments (ongoing) No pulse shape simulation / analysis included yet

Background reduction summary MC simulation of 21 detectors with 18-fold segmentation Part Source Detector Co-60 3.2 ± 0.1 38.3 ± 1.0 Ge-68 2.4 ± 0.1 18.0 ± 1.4 Tl-208 2.2 ± 0.4 4.6 ± 0.9 Bi-214 2.8 ± 0.5 6.0 ± 1.4 Co-60 6.7 ± 0.2 157 ± 27 Electronic Tl-208 1.5 ± 0.3 2.9 ± 0.6 Holder SFC SFS Segmentation improves background rejection by up to an order of magnitude

Background reduction summary Part Background contribution [10-4 counts/(kg kev y)] Detector Holder 68 Ge 10.8 (4.3) 60 Co 0.3 (0.3) Bulk 3.0 Surf. 3.5 Cu 1.4 Teflon 2.0 Cabling 7.6 Electronics 3.5 Liquid nitrogen 0.1 Infrastructure 2.9 Muons and neutrons 2.0 Total 37.1 Gain through segmentation factor ~10-30 Reducible via PSA Redesign: Reduce mass Will change with argon (30.6)

Conclusion Neutrinoless double beta-decay opens an exciting window to neutrino properties Experiments (GERDA) place emphasis on low background Identification and reduction of background processes important need complementary techniques Segmented germanium detectors have a great potential to distinguish between electron and photon induced events: Segment (anti-)coincidences Pulse shape analysis Rich experimental program ongoing Awaiting GERDA data...