Systematic study of magnetar outbursts

Similar documents
INTEGRAL & Magnetars: a high energy approach to extreme neutron stars

(Anomalous) X-Ray Pulsars. Vicky Kaspi. Montreal, Canada. Stanford December 16, 2004

Probing the physics of magnetars

Magnetars, the most extreme Neutron Stars. Multiwavelenght emission

Nanda Rea. XMM-Newton reveals magnetars magnetospheric densities. University of Amsterdam Astronomical Institute Anton Pannekoek NWO Veni Fellow

X-ray Observations of Rotation Powered Pulsars

The Giant Flare of 2004 Dec 27 from SGR and Fundamental Physics from Magnetars

X-ray Spectra from Magnetar Candidates

Bursts and flares from magnetic Pulsars

Extreme optical outbursts from a magnetar-like transient source: SWIFT J

The decaying magneticfield of magnetars

Evolution with decaying and re-emerging magnetic field

SGRs Long term variability

X-ray Properties of Rotation Powered Pulsars and Thermally Emitting Neutron Stars

Pulsars & Double Pulsars:! A Multiwavelength Approach!

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/

Young Neutron Stars and the Role of Magnetic Fields in their Evolution

Wide-Band Spectral Studies of Magnetar Burst and Persistent Emissions

Victoria Kaspi (McGill University, Montreal, Canada)

Emission Model(s) of Magnetars

arxiv: v2 [astro-ph.he] 18 Mar 2013

A propeller model for the sub-luminous accretion disk state of transitional millisecond pulsars

Anomalous X-ray Pulsars

The Neutron Star Zoo. Stephen C.-Y. Ng ( 吳志勇 ) HKU

THERMAL EVOLUTION OF ORDINARY NEUTRON STARS AND MAGNETARS

Hard X-ray emission from magnetars

H. Tong, W. Wang

SUPERFLUID MAGNETARS AND QPO SPECTRUM

arxiv: v1 [astro-ph] 1 Apr 2008

MILLISECOND PULSARS. Merve Çolak

EXTREME NEUTRON STARS

Progress in Pulsar detection

Gamma-ray binaries as pulsars spectral & variability behaviour Guillaume Dubus. Laboratoire d Astrophysique de Grenoble UMR 5571 UJF / CNRS

A FIRST LOOK WITH Chandra AT SGR AFTER THE GIANT FLARE: SIGNIFICANT SPECTRAL SOFTENING AND RAPID FLUX DECAY

Thermal Radiation from Isolated Neutron Stars

Modelling magnetars high energy emission through Resonant Cyclotron Scattering

Thermal Emission from Isolated Neutron Stars

MAGNETARS AS COOLING NEUTRON STARS

Final States of a Star

Simultaneous XMM-Newton Radio Observations of the Mode-switching Radio Pulsar PSR B Wim Hermsen 1,2

Cooling Limits for the

4U E. Bozzo. M. Falanga, A. Papitto, L. Stella, R. Perna, D. Lazzati G. Israel, S. Campana, V. Mangano, T. Di Salvo, L.

Isolated And Accreting Magnetars Viewed In Hard X-rays

Tidal disruption events from the first XMM-Newton Slew Survey

Fermi GBM Science Highlights.

The Magnificent Seven Similarities and Differences

Too much pasta for pulsars to spin down.

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

Neutron Stars: Observations

Crustal cooling in accretion heated neutron stars

arxiv: v1 [astro-ph.he] 14 Feb 2017

FERMI GBM detections of four AXPs at soft gamma-rays

Magnetic Field Evolution in Neutron Star Crusts

arxiv: v1 [astro-ph.he] 17 Nov 2011

Cooling Neutron Stars. What we actually see.

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars

Observations of. Pulsar Wind Nebulae

A resonant cyclotron scattering model for the X-ray spectra of Magnetar Candidates

Hunting for state transitions in AMXPs

Hard X-ray Emission by Resonant Compton Upscattering in Magnetars

Emission from Isolated Neutron Stars. Observations and model applications

The magnetic properties of Main Sequence Stars, White Dwarfs and Neutron Stars

Magnetic fields of neutron stars: the AMXP connection

Next Paper(s) Period and Magnetic Field

The Secret Life of Neutron Stars. Jeremy Heyl Harvard-Smithsonian CfA

X-ray emission properties vary with spin-down age. Crab-like pulsars (< 10 4 yrs)

Lecture 3 Pulsars and pulsar wind nebulae

Discovery of a New Gamma-Ray Binary: 1FGL J

XMM-Newton Observations of the Isolated Neutron Star 1RXS J / RBS 1774

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

UvA-DARE (Digital Academic Repository)

Hard X-ray/soft γ-ray Characteristics of the Persistent Emission from Magnetars

Monday, October 21, 2013 Third exam this Friday, October 25. Third Sky Watch watch the weather! Review sheet posted today. Review Thursday, 5 6 PM,

The γ-ray flares from Cygnus X-3 detected by AGILE

Spectral Analysis of the Double Pulsar PSR J with XMM-Newton

XMM observations of three middle-aged pulsars

New Radio Millisecond Pulsars in Fermi (formerly) Unassociated Sources

arxiv:astro-ph/ v1 23 Nov 2003

X-ray and multiwavelength observations of pulsarwind

discovers a radio-quiet gamma-ray millisecond Journal Group

V5116 Sgr (Nova Sgr 2005b): an eclipsing supersoft postoutburst nova?

Sources of GeV Photons and the Fermi Results

arxiv: v1 [astro-ph.he] 21 Oct 2010

Identification of seven persistent low-luminosity pulsators. Ramanpreet Kaur University of Amsterdam

Gamma-ray observations of millisecond pulsars with the Fermi LAT. Lucas Guillemot, MPIfR Bonn. NS2012 in Bonn 27/02/12.

The Magnificent Seven: Nearby, Thermally Emitting, Isolated Neutron Stars

V2487 Oph 1998: a puzzling recurrent nova observed with XMM-Newton

Neutron Stars. We now know that SN 1054 was a Type II supernova that ended the life of a massive star and left behind a neutron star.

A Detailed Study of. the Pulsar Wind Nebula 3C 58

Surface emission of neutron stars

Hot-subdwarf stars: a new class of X-ray sources

Type-I Burst as a Probe of the X-ray Binary Corona

arxiv:astro-ph/ v2 22 Sep 2006

The fundamental INTEGRAL contributions to advance the millisecond X-ray pulsars research field

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

Extended X- ray emission from PSR B /LS 2883 and other gamma- ray binaries

Infrared-Optical observations of magnetars

arxiv: v1 [astro-ph.he] 14 Jul 2016

Extreme Astrophysics with Neutron Stars

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays

Transcription:

Systematic study of magnetar outbursts Francesco Coti Zelati Institute for Space Sciences, CSIC-IEEC, Barcelona In collaboration with N. Rea (CSIC-IEEC, U. Amsterdam), J. A. Pons (U. Alicante), S. Campana (INAF-OAB), P. Esposito (U. Amsterdam) Coti Zelati et al., submitted Physics of Neutron Stars 2017, Ioffe Institute, Saint Petersburg, July 10, 2017

Observational properties Swift-XRT INTEGRAL COMPTEL About 25 X-ray pulsars with Lx ~ 10 33-10 36 erg s -1 Fermi-LAT X-ray luminosity generally larger than the rotational energy loss rate soft and hard X-ray emission (0.5-200 kev); thermal + PL spectrum 4U 0142+614 Kuiper et al. 2004; Abdo et al. 2010 rotating with P ~ 2-12 s magnetic fields of ~10 13-10 15 Gauss flaring activity in soft gamma-rays (0.01-10 2 s; Lx ~10 39-10 47 erg s -1 ) faint infrared/optical emission (Israel et al. 2010) Kaspi et al. 2003 transient pulsed radio emission (in 4 cases) see Rea & Esposito (2011); Turolla et al. (2015); Kaspi & Beloborodov (2017) for reviews Camilo et al. 2006

Magnetar flaring activity (timescale: seconds/minutes) Short bursts duration ~0.01-1s Lx ~10 39-10 41 erg s -1 soft γ-rays thermal spectra (kt ~ 30-40 kev) Intermediate bursts duration 1-40 s peak ~10 41-10 43 erg s -1 abrupt on-set usually soft γ-rays thermal spectra Giant Flares very rare events (only 3 observed) Lx > 3x10 44 erg s -1 initial peak lasting <1 s with a hard spectrum ringing tail that can last > 500s, with softer spectrum and showing the NS spin pulsations Kaspi et al. 2003 Israel et al. 2008 Israel et al. 2008 (Palmer et al. 2005) Palmer et al. 2005

Magnetar outburst activity (timescale: months/years) 1000 100 Bolometric luminosity (10 33 erg s 1 ) 10 1 0.1 SGR 1627 41 (1998) 1E 2259+586 (2002) SGR 1806 20 CXOU 1647 4552 (2006) SGR 1627 41 (2008) SGR 0501+4516 1E 1547 5408 (2008) 1E 1547 5408 (2009) SGR 0418+5729 SGR 1833 0832 Swift J1822.3 1606 Swift J1834.9 0846 CXOU 1647 4552 (2011) 1E 1048.1 5937 (2011) 1E 2259+586 (2012) SGR 1745 2900 SGR 1935+2154 1E 1048.1 5937 (2016) 0.01 0.01 0.1 1 10 100 1000 Time (days since outburst onset) Coti Zelati et al. submitted

Outburst mechanisms 1. Internal source of heat: Local magnetic stresses deform part of the stellar crust. Plastic flows convert the magnetic energy into heat. Partly is conducted up to the surface and radiated (thermal afterglow) 2. External source of heat: Crustal displacements twist up the external B-field. Returning currents hit and heat the NS surface. The bundle dissipates as the energy supply from the star interior decreases. Both processes are likely at work. Emission can be sustained up to a few years. Thompson et al. 2002; Beloborodov 2009; Pons & Rea 2012; Parfrey et al. 2013; Beloborodov & Levin 2014 Beloborodov & Li 2016; Li et al. 2016

Motivation for the study A systematic and homogeneous analysis of the spectral properties of magnetars in outbursts is needed to: (i) model all outbursts cooling curves in a consistent way; (ii) unveil possible correlations among different parameters Deeper insight into the emission processes via modelling with internal crustal cooling codes. Varying the injected energy Pons & Rea 2012 Pons & Rea 2012 Varying the quiescent luminosity

Systematic study magnetar outbursts: some numbers The magnetar outburst online catalog - 23 outbursts - 14 magnetars + 2 high-b RPPs + CCO in RCW 103 - about 1100 X-ray observations (12 Ms) between 1998 and mid May 2017

Systematic study magnetar outbursts: data analysis The magnetar outburst online catalog - reduction of raw data sets, extraction of spectra for all observations - spectral fitting with BB, 2BB, BB+PL and more physically-motivated models - extraction of fluxes and luminosities in each observation - extraction of the light curves - empirical modelling of the bolometric cooling curves - estimate of the outburst energetics and decay-timescale

High quality X-ray spectra 1E 1547-5408 (2008) 1E 1547-5408 (2009) Chandra Chandra SGR 0418+5729 SGR 1833-0832 XMM-Newton XMM-Newton Swift 1822.3-1606 Swift 1834.9-0846 XMM-Newton Chandra

Cooling curves: XTE J1810-197 Absorbed X-ray flux BB1 X-ray luminosity Bolometric BB2 X-ray luminosity X-ray luminosity

The outburst sample, fitted models, energetics and timescales Bolometric luminosity (10 33 erg s -1 ) SGR 1627-41 (1998) 1E 2259+586 (2002) SGR 1806-20 CXOU 1647-4552 (2006) SGR 1627-41 (2008) SGR 0501+4516 - - - 1E 1547-5408 (2008) 1E 1547-5408 (2009) SGR 0418+5729 SGR 1833-0832 Swift 1822.3-1606 - - - Swift J1834.9-0846 - - - CXOU 1647-4552 (2011) - - - 1E 1048.1-5937 (2011) -. - 1E 2259+586 (2012) - - - SGR 1745-2900 - - - 1E 1048.1-5937 (2016) Time (days since outburst onset)

Correlations & Anticorrelations

Correlations & Anticorrelations SGR 0418+5729 5.7 σ Swift J1834.9-0846 PSR J1119-6127 Swift 1822.3-1606 SGR 1627-41 (2008) 1E 1547-5408 (2009) 1E 161348-5055 (2000) 1E 1547-5408 (2008) 1E 161348-5055 (2016) SGR 1745-2900 SGR 1627-41 (1998) SGR 0501+4516 CXOU 1647-4552 (2006) PSR J1846-0258 CXOU 1647-4552 (2011) SGR 1833-0832 XTEJ1810-197 1E 1048.1-5937 (2011) SGR 1806-20 1E 1841-045 1E 1048.1-5937 (2016) 4U 0142+614 (2011, 2015) SGR 1900+14 (2001) 1E 2259+586 (2002) SGR 1900+14 (2006) 1E 2259+586 (2012) Pons & Rea 2012 The definition of transient magnetars as opposed to the persistent magnetars is deceptive: it only reflects their different quiescent luminosities 4.0 σ 1E 1547-5408 (2009) SGR 1806-20 SGR 1745-2900 1E 16348-5055 (2016) 1E 1048.1-5937 (2011) Large flux enhancements can only be observed in faint quiescent magnetars 1E 1048.1-5937 (2016) SGR 1627-41 (1998) 1E 16348-5055 (2000) XTEJ1810-197 CXOU 1647-4552 (2006) SGR 1627-41 (2008) SGR 1833-0832 PSR J1119-6127 Swift 1822.3-1606 1E 2259+586 (2012) PSR J1846-0258 Swift J1834.9-0846 SGR 0418+5729 SGR 0501+4516 1E 2259+586 (2002) CXOU 1647-4552 (2011) Pons & Rea 2012

Correlations & Anticorrelations Magnetars CCOs RPPs XDINSs CCOs depart significantly from the trend. 5.3 σ with CCOs Expected in the hidden magnetic field scenario: fallback accretion onto the NS (10-3 - 10-2 MSun in hrs-days) can bury a B field of a few 10 12 G into the inner crust (Viganò & Pons 2012; Torres-Forné et al. 2016). The external B field is lower than the internal hidden B field, hence does not trace the bolometric luminosity Magnetars CCOs RPPs XDINSs RPPs depart a bit from the trend. The larger luminosity wrt the prediction is likely due to slamming particles heating the NS surface, providing an additional source of heat 6.5 σ without CCOs

Correlations & Anticorrelations 3.7 σ 1E 1547-5408 (2009) SGR 1745-2900 1E 1048.1-5937 (2011) 1E 1048.1-5937 (2016) XTEJ1810-197 SGR 1627-41 (1998) CXOU 1647-4552 (2006) SGR 1627-41 (2008) PSR J1119-6127 SGR 1833-0832 SGR 1806-20 Broad agreement with the idea that magnetar outbursts are ultimately powered by the dissipation of the B-field PSR J1846-0258 Swift 1822.3-1606 1E 2259+586 (2012) Swift J1834.9-0846 1E 2259+586 (2002) SGR 0418+5729 SGR 0501+4516 CXOU 1647-4552 (2011) SGR 1806-20 SGR 1745-2900 1E 1547-5408 (2009) 1E 1048.1-5937 (2011) 3.3 σ 1E 1048.1-5937 (2016) XTEJ1810-197 SGR 1627-41 (1998) SGR 1627-41 (2008) CXOU 1647-4552 (2006) SGR 1833-0832 PSR J1119-6127 Young magnetars undergo more energetic outbursts PSR J1846-0258 Swift J1834.9-0846 1E 2259+586 (2012) 1E 2259+586 (2002) Swift 1822.3-1606 SGR 0501+4516 SGR 0418+5729 CXOU 1647-4552 (2011)

Correlations & Anticorrelations 3.9 σ 1E 1547-5408 (2009) SGR 1627-41 (1998) 1E 161348-5055 (2000) Swift 1822.3-1606 SGR 1627-41 (2008) 1E 161348-5055 (2016) XTEJ1810-197 1E 1048.1-5937 (2011) SGR 1806-20 SGR 1745-2900 SGR 0501+4516 1E 2259+586 (2012) CXOU 1647-4552 (2006) 1E 1048.1-5937 (2016) SGR 1833-0832 SGR 0418+5729 PSR J1119-6127 CXOU 1647-4552 (2011) PSR J1846-0258 1E 2259+586 (2002) Swift J1834.9-0846 Similar decay pattern for all magnetar outbursts Expected in the interior crustal cooling model (the deeper the location of the energy release, the more energetic the outburst, the longer the time for heat diffusion) Expected in the untwisting bundle model (Τ E^0.5)

The magnetar outburst online catalog - online catalogues with all files and parameters soon publicly available magnetars.ice.csic.es

The magnetar outburst online catalog - online catalogues with all files and parameters soon publicly available Fit your favourite function to different parameters magnetars.ice.csic.es

The magnetar outburst online catalog - online catalogues with all files and parameters soon publicly available magnetars.ice.csic.es