Introduction to Quantum Computing

Similar documents
Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace

QOT - Quantum Optical Technologies

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

Introduction to Quantum Computing

Quantum Circuits and Algorithms

*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co.

Quantum Computing. Thorsten Altenkirch

Reversible and Quantum computing. Fisica dell Energia - a.a. 2015/2016

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA

- Why aren t there more quantum algorithms? - Quantum Programming Languages. By : Amanda Cieslak and Ahmana Tarin

Quantum Computing. Quantum Computing. Sushain Cherivirala. Bits and Qubits

Factoring on a Quantum Computer

Quantum Computing. Richard Jozsa Centre for Quantum Information and Foundations DAMTP University of Cambridge

Quantum Computing. 6. Quantum Computer Architecture 7. Quantum Computers and Complexity

Quantum computing! quantum gates! Fisica dell Energia!

Advanced Cryptography Quantum Algorithms Christophe Petit

Quantum Computing: Transforming the Digital Age

Quantum Computation and Communication

Quantum gate. Contents. Commonly used gates

Introduction to Quantum Computing

Projects about Quantum adder circuits Final examination June 2018 Quirk Simulator

b) (5 points) Give a simple quantum circuit that transforms the state

IBM Systems for Cognitive Solutions

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm

IBM quantum experience: Experimental implementations, scope, and limitations

Challenges in Quantum Information Science. Umesh V. Vazirani U. C. Berkeley

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Logical error rate in the Pauli twirling approximation

Quantum Effect or HPC without FLOPS. Lugano March 23, 2016

Volume 2, Issue 9, September 2014 International Journal of Advance Research in Computer Science and Management Studies

Large-Scale Quantum Architectures

Programming the Quantum Future

An Introduction to Quantum Information and Applications

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT

Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum Computing University of Waterloo

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

Hamiltonian simulation and solving linear systems

10.2 Introduction to quantum information processing

Quantum Information Processing and Diagrams of States

Quantum parity algorithms as oracle calls, and application in Grover Database search

6.2 Introduction to quantum information processing

Quantum Computation. Dr Austin Fowler Centre for Quantum Computer Technology. New Scientist, 10/11/07

Quantum Algorithms for Quantum Field Theories

An Architectural Framework For Quantum Algorithms Processing Unit (QAPU)

Quantum Wireless Sensor Networks

Parallelization of the QC-lib Quantum Computer Simulator Library

Some Introductory Notes on Quantum Computing

Driving Qubit Transitions in J-C Hamiltonian

Gates for Adiabatic Quantum Computing

1500 AMD Opteron processor (2.2 GHz with 2 GB RAM)

Short introduction to Quantum Computing

10.2 Introduction to quantum information processing

Shor s Prime Factorization Algorithm

The Classification of Clifford Gates over Qubits

Quantum Computer Compilers

Chapter 1. Introduction

Promise of Quantum Computation

4th year Project demo presentation

Quantum Phase Estimation using Multivalued Logic

Quantum Neural Network

Quantum High Performance Computing. Matthias Troyer Station Q QuArC, Microsoft

Extended Superposed Quantum State Initialization Using Disjoint Prime Implicants

)j > Riley Tipton Perry University of New South Wales, Australia. World Scientific CHENNAI

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

Experimental Quantum Computing: A technology overview

Chapter 10. Superconducting Quantum Circuits

Physics ; CS 4812 Problem Set 4

Quantum Annealing for Prime Factorization

Introduction to Quantum Computing

Quantum Computers Is the Future Here?

Quantum Computing: From Circuit To Architecture

Post Von Neumann Computing

Attacking the ECDLP with Quantum Computing

A Thermodynamic Turing Machine: Artificial Molecular Computing Using Classical Reversible Logic Switching Networks [1]

arxiv:quant-ph/ v3 11 Mar 2004

arxiv: v2 [quant-ph] 1 Jun 2017

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Chapter 10. Quantum algorithms

System Roadmap. Qubits 2018 D-Wave Users Conference Knoxville. Jed Whittaker D-Wave Systems Inc. September 25, 2018

Index. Vladimir Silva 2018 V. Silva, Practical Quantum Computing for Developers,

Database Manipulation Operations on Quantum Systems

C. QUANTUM INFORMATION 111

QUANTUM COMPUTER SIMULATION

QUANTUM COMPUTING & CRYPTO: HYPE VS. REALITY ABHISHEK PARAKH UNIVERSITY OF NEBRASKA AT OMAHA

Algorithms, Logic and Complexity. Quantum computation. basic explanations! &! survey of progress

Compute the Fourier transform on the first register to get x {0,1} n x 0.

Quantum Computing 101. ( Everything you wanted to know about quantum computers but were afraid to ask. )

Resource Efficient Design of Quantum Circuits for Quantum Algorithms

QWIRE Practice: Formal Verification of Quantum Circuits in Coq

AIR FORCE INSTITUTE OF TECHNOLOGY

arxiv: v3 [quant-ph] 16 Mar 2018

Quantum Key Distribution and the Future of Encryption

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN

Quantum computers can search arbitrarily large databases by a single query

high thresholds in two dimensions

C/CS/Phys C191 Quantum Gates, Universality and Solovay-Kitaev 9/25/07 Fall 2007 Lecture 9

Transcription:

Introduction to Quantum Computing Stephen Casey NASA Slide template creator Krysta Svore

Bloch Sphere Hadamard basis θ φ

Quantum Hardware Technologies Quantum dots Superconductors Ion traps Nitrogen vacancy centers Optical photons Topological

Unitary gates Pauli-X X Controlled-NOT Pauli-Y Y Pauli-Z Z Swap Hadamard H Phase S Controlled-swap Rotation R

Quantum circuit model 1 H 0 H 1

Entanglement Entangled H Bell states

Quantum Fourier Transform

Exponential Speedup QFT

Classical FFT: 1GB 10 billion operations Quantum FFT: 1GB 27 operations Spectroscopy Acoustics Video compression Quantum mechanics Signal processing

1807082088687 4048059516561 6440590556627 8102516769401 3491701270214 5005666254024 4048387341127 5908123033717 8188796656318 2013214880557 =?? Slide credit: John Preskill

1807082088687 4048059516561 6440590556627 8102516769401 3491701270214 5005666254024 4048387341127 5908123033717 8188796656318 2013214880557 = 3968599945959 7454290161126 1628837860675 7644911281006 4832555157243 Peter Shor 4553449864673 5972188403686 8972744088643 5630126320506 9600999044599 Slide credit: John Preskill

Classical Computer Quantum Computer 193 digits: 30 CPU-years (2.2 GHz) 500 digits: 10 12 CPU-years 193 digits: 0.1 seconds 500 digits: 2 seconds

Programming languages import Quipper Quipper w :: (Qubit,Qubit) -> Circ (Qubit,Qubit) w = named_gate "W" toffoli :: Qubit -> (Qubit,Qubit) -> Circ Qubit toffoli d (x,y) = qnot d 'controlled' x.==. 1.&&. y.==. 0 eiz_at :: Qubit -> Qubit -> Circ () eiz_at d r = named_gate_at "eiz" d 'controlled' r.==. 0 circ :: [ (Qubit,Qubit) ] -> Qubit -> Circ () circ ws r = do label (unzip ws,r) (("a","b","r") with_ancilla $ \d -> do mapm_ w ws mapm_ (toffoli d) ws eiz_at d r mapm_ (toffoli d) (reverse ws) mapm_ (reverse_generic w) (reverse ws) return () main = print_generic EPS circ (replicate 3 (qubit,qubit)) qubit CCAdd a cbs AddA' N bs QFT' bs CNOT [bmx ; anc] QFT bs CAddA N (anc :: bs) ccadd' a cbs QFT' bs X [bmx] CNOT [bmx ; anc] X [bmx] QFT bs CCAdd a cbs Liqui > // Perform the initial Add // Invert the add // Convert out of Fourier space // Remember the overflow bit // Return to Fourier space // Do the add based on overflow // Undo the add // Get out of Fourier space // Use the top bit as a flag // Clean up the Ancilla // Reverse use of the top bit // Return to Fourier space // Do the final version of the add QCL, Q, qgcl, QFC, QPL, QML, and others!

D-Wave Two 77K 4K 1K 300mK 20mK Image credit: D-Wave Systems, Inc.

Processor Architecture Chimera structure Superconducting flux qubits Ising model

s=+1 J 12 s=-1 h 1 h 2 J 13 J 24 Find optimum s to minimize H(s) s=-1 J 34 s=+1 h 3 h 4

Graph embedding Image credit: Dridi and Alghassi, 2015

H H U f H Gate model Adiabatic model

Thermal annealing Quantum annealing Optimized solution = global minimum energy

Optimization equals

Machine Learning

Large Hadron Collider Searching for Exotic Particles in High- Energy Physics with Deep Learning Baldi et al., 2014 Boosted Decision Trees Shallow Neural Networks Deep Neural Networks NASA Quantum Artificial Intelligence Lab (QuAIL) Bayesian Network Structure Learning Using Quantum Annealing O'Gorman et al., 2014 NASA Kepler mission s search for habitable, Earth-sized planets

Other Applications

Quantum field theory Relativistic scattering amplitudes in four-dimensional spacetime Jordan et at. (2012) Exponential speedups Grover s algorithm Grover (1996) Quadratic speedups Searching large databases Quantum simulation Quantum chemistry, materials science, large physical systems Feynman (1982); Lanyon et al. (2009) Exponential speedups Breaks RSA, DSA, ElGamal, and elliptic curve signature protocols Unbreakable encryption BB84, E91, Lo-Chau, KMB09 protocols Shor (1994), Bennett and Brassard (1984), Ekert (1991) Quantum key networks exist in Boston, LANL, Vienna, Geneva, and Tokyo Encryption

What happens next? Thanks to Markus Diefenthaler