Math Real Analysis II

Similar documents
MATH 1231 MATHEMATICS 1B Calculus Section 4.4: Taylor & Power series.

Section Taylor and Maclaurin Series

TAYLOR SERIES [SST 8.8]

8.3 Partial Fraction Decomposition

MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series.

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

MATH 103 Pre-Calculus Mathematics Test #3 Fall 2008 Dr. McCloskey Sample Solutions

Completion Date: Monday February 11, 2008

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

TAYLOR AND MACLAURIN SERIES

Math 1310 Section 4.1: Polynomial Functions and Their Graphs. A polynomial function is a function of the form ...

Chapter 5: Integrals

Math 1314 Lesson 1: Prerequisites. Example 1: Simplify and write the answer without using negative exponents:

Taylor and Maclaurin Series

Chapter 5: Integrals

1 Question related to polynomials

Chapter 2 Polynomial and Rational Functions

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials

Math Real Analysis II

Section 5.8. Taylor Series

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Final exam (practice) UCLA: Math 31B, Spring 2017

Applied Calculus I. Lecture 29

Math 10860, Honors Calculus 2

AP Calculus Chapter 9: Infinite Series

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

Ma 530 Power Series II

19. TAYLOR SERIES AND TECHNIQUES

5.9 Representations of Functions as a Power Series

Infinite series, improper integrals, and Taylor series

Instructor Notes for Chapters 3 & 4

Section 9.7 and 9.10: Taylor Polynomials and Approximations/Taylor and Maclaurin Series

Taylor series. Chapter Introduction From geometric series to Taylor polynomials

Math 107H Fall 2008 Course Log and Cumulative Homework List

Math 1320, Section 10 Quiz IV Solutions 20 Points

A DEEPER LOOK AT USING FUNCTIONS IN MATHEMATICA

SB CH 2 answers.notebook. November 05, Warm Up. Oct 8 10:36 AM. Oct 5 2:22 PM. Oct 8 9:22 AM. Oct 8 9:19 AM. Oct 8 9:26 AM.

Math 115 HW #5 Solutions

Examples. f (x) = 3x 2 + 2x + 4 f (x) = 2x 4 x 3 + 2x 2 5x 2 f (x) = 3x 6 5x 5 + 7x 3 x

4 Integration. Copyright Cengage Learning. All rights reserved.

Identifying the Graphs of Polynomial Functions

MATH 1271 Monday, 21 November 2018

Chapter 11 - Sequences and Series

Lecture 7 - Separable Equations

Rational Functions 4.5

( ) 0. Section 3.3 Graphs of Polynomial Functions. Chapter 3

a j x j. j=0 The number R (possibly infinite) which Theorem 1 guarantees is called the radius of convergence of the power series.

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved.

INTEGRATING RADICALS

Section 7.4: Inverse Laplace Transform

LECTURE 14: REGULAR SINGULAR POINTS, EULER EQUATIONS

Math 1B, lecture 15: Taylor Series

8.7 MacLaurin Polynomials

TAYLOR POLYNOMIALS DARYL DEFORD

Student name: Student ID: TA s name and/or section: MATH 3B (Butler) Midterm II, 20 February 2009

Taylor and Maclaurin Series. Approximating functions using Polynomials.

2015 Math Camp Calculus Exam Solution

1 Lesson 13: Methods of Integration

Ch. 7.6 Squares, Squaring & Parabolas

Math Numerical Analysis

Math 180, Final Exam, Fall 2007 Problem 1 Solution

Calculus I Announcements

Math 106 Answers to Exam 3a Fall 2015

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

What if There Were No Law of Large Numbers?

(b) Prove that the following function does not tend to a limit as x tends. is continuous at 1. [6] you use. (i) f(x) = x 4 4x+7, I = [1,2]

Math 1270 Honors ODE I Fall, 2008 Class notes # 14. x 0 = F (x; y) y 0 = G (x; y) u 0 = au + bv = cu + dv

MATH 1910 Limits Numerically and Graphically Introduction to Limits does not exist DNE DOES does not Finding Limits Numerically

X. Numerical Methods

The highest degree term is x $, therefore the function is degree 4 (quartic) c) What are the x-intercepts?


Lecture 9: Taylor Series

Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula. 1. Two theorems

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II)

Last/Family Name First/Given Name Seat #

MTH101 Calculus And Analytical Geometry Lecture Wise Questions and Answers For Final Term Exam Preparation

Mathematical Induction

Infinite Series. Copyright Cengage Learning. All rights reserved.

Calculus I Practice Final Exam B

INFINITE SEQUENCES AND SERIES

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

1.4 Techniques of Integration

. As x gets really large, the last terms drops off and f(x) ½x

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period:

Solving Differential Equations Using Power Series

Solving Differential Equations Using Power Series

Finding Limits Analytically

The definite integral gives the area under the curve. Simplest use of FTC1: derivative of integral is original function.

5.5. The Substitution Rule

Antiderivatives and Indefinite Integrals

Integration by Substitution

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3

Projections and Least Square Solutions. Recall that given an inner product space V with subspace W and orthogonal basis for

Ch 7 Summary - POLYNOMIAL FUNCTIONS

n=1 ( 2 3 )n (a n ) converges by direct comparison to

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series:

Transcription:

Math 432 - Real Analysis II Solutions to Homework due February 3 In class, we learned that the n-th remainder for a smooth function f(x) defined on some open interval containing is given by f (k) () R n (x) = f(x). Taylor s Theorem gives a very helpful expression of this remainder. It says that for some c between and x, A function is called analytic on a set S if x n. f(x) = f (k) () for all x S. In other words, f is analytic on S if and only if n R n (x) = for all x S. Question. Use Taylor s Theorem to prove that all polynomials are analytic on all R by showing that R n (x) for all x R. Solution. Let f(x) be a polynomial of degree m. Then, for all k > m derivatives, f (k) (x) is the constant function. Thus, for any x R, R n (x). So, the polynomial f is analytic on all R. Question 2. Use Taylor s Theorem to prove that e x is analytic on all R. by showing that R n (x) for all x R. Solution 2. Note that f (k) (x) = e x for all k. Fix an x R. Then, by Taylor s Theorem, R n (x) = ec x n for some c between and x. We now proceed with two cases. In the first case, assume that x >. Then, e c < e x since e x is an increasing function. Thus, R n (x) = ec x n < ex x n. Since ex x n, then R n (x) by the Squeeze Theorem. For the second case, assume that x <. Then, e x < e c <. We will show that R n (x), which is equivalent to R n (x). Notice that since < e x < e c <, we have that e x x n < ec x n < x n, where the middle terms is equivalent to R n (x). Since the two exterior terms it to, by the Squeeze Theorem, the middle term will also tend to. So, R n (x) and thus R n (x). Thus, for all x R, e x is equal to its Taylor series. So, e x is analytic on all R Question 3. This next question investigates the relationship between even and odd functions and the powers of their respective Taylor series. Recall that a function is called even if f(x) = f( x) for all x R and is called odd if f( x) = f(x).

(a) Let f be a differentiable function. Show that if f is an even function, then f is an odd function. Furthermore, show that if f is an odd function, then f is an even function. (b) Show that if f is odd, then f() =. (c) Show that if f is odd, then f (n) () = when n is even. (d) Use (c) to show that if f is odd, then its Taylor series contains only odd powers of x. Solution 3. (a) If f is even, then f(x) = f( x). Taking derivatives of both sides, we get that f (x) = f ( x). Thus, f is an odd function. If f is odd, then f(x) = f( x). Taking derivatives of both sides, we get that f (x) = f( x), which is equivalent to f (x) = f ( x). So, f is even. (b) If f is odd, then f(x) = f( x). Plugging in x =, we get that f() = f( ) = f(). Since f() = f(), it must be the case that f() =. (c) For n =, we have that f (n) () = f() = by (a). The first derivative of f is even. Differentiating again, we get that f must be odd since it is the derivative of an even function. Thus f () =. Continuing in this way, we get that f (k) () = if k is even. (d) If f is odd, then its even-powered derivatives at are. Thus, when computing the Taylor series, these terms vanish. So, the only remaining terms are odd. Question 4. Consider the function f(x) = e x and its Taylor polynomials. (a) Graph the n-th degree Taylor polynomials n for n =, 2, 3, 4 and 5 along with the graph of e x. (b) Notice that for x >, the Taylor polynomials for e x lie below the graph of e x itself. Theorem to explain why this is true. (c) What happens when x <? As with (b), explain your result using Taylor s Theorem. Use Taylor s Solution 4. (a) By Taylor s Theorem, there exists a c (, x) such that For e x, we have that f (n) (x) = e x. Thus, x n. x n = ec xn. Since x >, all terms are positive and we get that R n (x) >. Thus, we have that and thus f(x) f(x) > > >. Thus, for x >, the graph of e x is always above any Taylor polynomial approximation. 2

(b) We observe that when n is odd, the graph of the Taylor polynomials are below the graph of e x ; conversely, when n is even, the graph of the Taylor polynomial is above e x. To understand this, we consider the remainder R n+ (x). Similar to above, by Taylor s Theorem, there exists some c (x, ) such that R n+ (x) = e c (n + )! xn+. Notice that since x <, if n is odd, then x n+ is positive and R n+ (x) >. Thus, f(x) > n. Conversely, if n is even, then x n+ is negative so R n+ (x) < and thus f(x) <. Question 5. In class, we used the Taylor series of arctan x to approximate π. In this question, we will re-visit the normal distribution from Statistics. Recall that the normal distribution function with a mean of µ and standard deviation of σ is given by (x µ) 2 f(x) = σ e 2σ. In particular, when we specify a mean of µ = and a standard deviation of σ =, we obtain a more simplified distribution equation: f(x) = e x2 2. An incredible amount of statistical information can be obtained by understanding definite integrals of this distribution. Unfortunately, we cannot directly use the Fundamental Theorem of Calculus to compute these definite integrals since the integrand has no nice antiderivative. Taylor series and their analytic properties, however, give us a way to approximate these integrals. (a) Use the Taylor series of e x to find the Taylor series of f(x) = e x2 2. Discuss the domain of convergence of this Taylor series. Is f(x) analytic on this domain? (b) Graph the n-th degree Taylor polynomials for f(x) for n =, 2, 3, 4, 5 along with the graph of f(x) itself. (c) Use the Taylor series from (a) to approximate e x2 2 dx. Using the Taylor polynomial of degree 5 may be wise. This number gives the probability that a randomly chosen sample from a normally distributed data set will fall between the mean and one standard deviation from the mean. (d) For your approximation of the definite integral using the Taylor polynomial of degree 5, what is the maximum possible error? (e) Use (c) to find the probability that a randomly chosen sample from a normally distributed data set will fall within one standard deviation of the mean. Check this answer with any number of charts or sheets available online. 3

Solution 5. (a) Since e x is analytic on all R, we get that e y = for all y R. Thus, letting y = x2 2, we get that e x2 /2 = y k x 2k 2 k. This equality holds whenever x 2 /2 R, which is true for all values of x. Thus, e x2 /2 is analytic on all R. So, the Taylor series for f(x) is given by f(x) = e x2 /2 = x 2k (b) The graphs of the Taylor polynomials of increasing degree get very close to the graph of f(x). (c) Analytic properties about power series allow us to compute definite integrals in a term-by-term manner. Thus, x 2k f(x) dx = 2 k dx = 2 k Thus, for large enough values of n, we have that f(x) dx x 2k dx = n 2 k 2 k 2 k (2k + ). 2k +. Computing this for n = 5, we get that the integral is approximately.343. (d) Since this is an alternating series, we can bound the error of this approximation by the absolute value of the first ignored term, which is 2 6 6! (3) =.665, 5994 which is incredibly small for use of such a small value of n. (e) The questions asks us to compute f(x) dx, which can be obtained by doubling the result from (c) since f(x) is an even function. Thus, the probability that a randomly chosen sample from a normally distributed data set will fall within one standard deviation of the mean is approximately 2.343 =.6826. Question 6. For the following its, attempt to use L Hôpital s Rule straight away and explain why it is fruitless. Then, compute the it by using an appropriate substitution y =..., as we did in class, or by some other clever method. (a) e x + e x x e x e x 4

(b) x /2 + x /2 x x /2 x /2 Solution 6. (a) Applying L Hôpital s Rule straight away will lead to a situation which never simplified. Instead, we can multiply the top and bottom by e x and get that x e x + e x + e 2x e x = e x x e 2x = + =. (b) Applying L Hôpital s Rule straight away will lead to a situation where the terms become more and more complicated. Instead, we can multiply by x /2 on the top and bottom to get x x /2 + x /2 + x = x /2 x /2 x x = + =. 5