Political Science 552

Similar documents
Y = β 0 + β 1 X 1 + β 2 X β k X k + ε

If we apply least squares to the transformed data we obtain. which yields the generalized least squares estimator of β, i.e.,

β0 + β1xi and want to estimate the unknown

Reminder: Nested models. Lecture 9: Interactions, Quadratic terms and Splines. Effect Modification. Model 1

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students.

) is violated, so that V( instead. That is, the variance changes for at least some observations.

17 - LINEAR REGRESSION II

Introduction to Regression

Statistics for Economics & Business

Addressing Alternative Explanations: Multiple Regression

Chapter 11: Simple Linear Regression and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

18. SIMPLE LINEAR REGRESSION III

Addressing Alternative. Multiple Regression Spring 2012

Topic 7: Analysis of Variance

28. SIMPLE LINEAR REGRESSION III

Lab 4: Two-level Random Intercept Model

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

Learning Objectives for Chapter 11

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β

Systems of Equations (SUR, GMM, and 3SLS)

Chapter 15 Student Lecture Notes 15-1

. *DEFINITIONS OF ARTIFICIAL DATA SET. mat m=(12,20,0) /*matrix of means of RHS vars: edu, exp, error*/

SOCY5601 Handout 8, Fall DETECTING CURVILINEARITY (continued) CONDITIONAL EFFECTS PLOTS

Unit 10: Simple Linear Regression and Correlation

Regression Analysis. Regression Analysis

Correlation and Simple Linear Regression

Chapter 14 Simple Linear Regression

Biostatistics 360 F&t Tests and Intervals in Regression 1

Basic Business Statistics, 10/e

Chap 10: Diagnostics, p384

Module Contact: Dr Susan Long, ECO Copyright of the University of East Anglia Version 1

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management

Heteroskedasticity Example

Properties of Least Squares

Chapter 15 - Multiple Regression

Regression. The Simple Linear Regression Model

Economics 326 Methods of Empirical Research in Economics. Lecture 14: Hypothesis testing in the multiple regression model, Part 2

ECON 351* -- Note 23: Tests for Coefficient Differences: Examples Introduction. Sample data: A random sample of 534 paid employees.

Statistics MINITAB - Lab 2

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Lab 11 - Heteroskedasticity

Linear Modelling in Stata Session 6: Further Topics in Linear Modelling

Lecture#12. Instrumental variables regression Causal parameters III

Group Comparisons: Differences in Composition Versus Differences in Models and Effects

Applied regression. Dr. Nitiphong Songsrirote

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Question 1 carries a weight of 25%; question 2 carries 20%; question 3 carries 25%; and question 4 carries 30%.

Confidence Interval for the mean response

STATISTICS 110/201 PRACTICE FINAL EXAM

The Ordinary Least Squares (OLS) Estimator

General Linear Model (Chapter 4)

****Lab 4, Feb 4: EDA and OLS and WLS

Section Least Squares Regression

Practice 2SLS with Artificial Data Part 1

Lab 10 - Binary Variables

Statistical Modelling in Stata 5: Linear Models

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity

Introduction to Dummy Variable Regressors. 1. An Example of Dummy Variable Regressors

BIO Lab 2: TWO-LEVEL NORMAL MODELS with school children popularity data

Chapter 5: Hypothesis Tests, Confidence Intervals & Gauss-Markov Result

Problem Set #5-Key Sonoma State University Dr. Cuellar Economics 317- Introduction to Econometrics

sociology 362 regression

ECO220Y Simple Regression: Testing the Slope

Binary Dependent Variables

F8: Heteroscedasticity

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA

ECON2228 Notes 7. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 41

Econometrics. 9) Heteroscedasticity and autocorrelation

Specification Error: Omitted and Extraneous Variables

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MTH352/MH3510 Regression Analysis

ANOVA. The Observations y ij

Problem Set #3-Key. wage Coef. Std. Err. t P> t [95% Conf. Interval]

Chapter 14 Simple Linear Regression Page 1. Introduction to regression analysis 14-2

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #6

Statistics for Business and Economics

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Problem 3.1: Error autotocorrelation and heteroskedasticity Standard variance components model:

Exercices for Applied Econometrics A

Yarine Fawaz ECONOMETRICS I

Comparison of Regression Lines

Lecture 8: Heteroskedasticity. Causes Consequences Detection Fixes

sociology 362 regression

SIMPLE LINEAR REGRESSION and CORRELATION

STATISTICS QUESTIONS. Step by Step Solutions.

Scientific Question Determine whether the breastfeeding of Nepalese children varies with child age and/or sex of child.

Problem Set 10: Panel Data

Rockefeller College University at Albany

IV. Modeling a Mean: Simple Linear Regression

Introduction to Analysis of Variance (ANOVA) Part 1

CHAPER 11: HETEROSCEDASTICITY: WHAT HAPPENS WHEN ERROR VARIANCE IS NONCONSTANT?

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li

Data Considerations and Ordinary Least Squares Estimation of Single-Equation Econometric Models

Applied Statistics and Probability for Engineers, 6 th edition Xy

UNIVERSITY OF TORONTO. Faculty of Arts and Science JUNE EXAMINATIONS STA 302 H1F / STA 1001 H1F Duration - 3 hours Aids Allowed: Calculator

experimenteel en correlationeel onderzoek

Reduced slides. Introduction to Analysis of Variance (ANOVA) Part 1. Single factor

Interpreting coefficients for transformed variables

Interpreting Slope Coefficients in Multiple Linear Regression Models: An Example

Transcription:

Dagnostcs and Smple Remedaton February 9, 4 Poltcal Scence 55 Volatng Assumptons Key Assumptons E { Y; X } β + β X E (, ) ε ~ nor σ { ε,ε } for j j X s measured wthout error Small Sample Plot Feelng Thermometer-Bush 8 7 6 5 4 3 3 4 5 6 Party ID

Dagnostcs and Smple Remedaton February 9, 4 Large Sample Plots FT-Bush 4 6 8 4 6 PartyID Plots wth Jtterng FT-Bush 4 6 8 4 6 PartyID Resduals as Dagnostc Tool e Y Y $ e* e MSE

Dagnostcs and Smple Remedaton February 9, 4 Prototypcal Resdual Plots Data Ambguty Data Set Varable Obs. (a)-(c) X (a) Y (b) Y (c) Y (d) X (d) Y. 4 9.4 7.46 6.58 6.95 8.4 6.77 5.76 3 3. 7.58 8.74.74 7.7 4 5 9.. 8.8 8.33 8.77 9.6 7. 7.8 8.84 8.47 Y 3 +. 5 X 6 4. 9.96 8.84 7.4 7 6. 7.4 6.3 6.8 5.5 8 4. 4.6 3. 5.39 9..5 9..84 9.3 8.5 5.56 7. 4.8 7.6 6.4 7.9 5. 5.68 4.74 5.73 6.89 Seeng Is Recognzng 5 4 3 - - -3 5 5 5 4 3 - - -3 5 5 5 4 3 - - 5 5 5 4 3 - - -3 5 5 3

Dagnostcs and Smple Remedaton February 9, 4 Polynomal Relatonshp Testng for Lnearty SSTO SSE r SSTO SSTO SSE E SSTO SSR SSTO SSG SSTO Nonlnear Relatonshp FT-Bush 4 6 8 4 6 PartyID 4

Dagnostcs and Smple Remedaton February 9, 4 ANOVA for Nonlnearty Source SS df MS F Total SSTO n- Lnear r*ssto SSR/ Nonlnear E*SSTO k- SSG/k- Addtonal (E-r)*SSTO k- SSad/k- (E-r)/(k-) Error (-E)*SSTO n-k- SSE/n-k- (-E)/(n-k- SOURCE DF SS MS F p Regresson 38. 38. 7.49. Nonlnear 6 393.7 655. 3.98. Improvement 5 3.7 6..56 >. Error 4 87.5 46.9 Total 48. E-sq.954 (E-sq - R-sq).3 df 5 R-sq.93 ( - E-sq).46 df 4 F (.3/5)/(.46/4.46/4).6/.5.54 Lnearty Test n Stata. generate pdv53. anova v36 pd v53, contnuous(pd) sequental anova Number of obs 496 R-squared.344 Root MSE.53 Adj R-squared.345 Source Seq. SS df MS F Prob > F -----------+---------------------------------------------------- Model 3449.397 6 5348.38 3.. pd 3535.659 3535.659 744.37. v53 53.7376 5 34.7475 7.37. Resdual 676.587 489 4.8395 -----------+---------------------------------------------------- Total 93.983 495 6.8836 Grad GPA 4.5 4. 3.5 3..5 Outlers y.7x.4x.5x +.8667 3.33 3.66 r.348.37.4 5 7 9 3 5 7 GRE-Total 5

Dagnostcs and Smple Remedaton February 9, 4 Heteroscedastcty Modfed Levene Test e~ and ~ e d ~e e d e ~e t d s d { d d } Modfed Levene: Stata Commands * Modfed Levene Test drop _all use "D:\COURSES\PS55\EXAMPLES\grades.dta", clear * get medan for predctor and create splt for sample summarze gre_total, detal generate splt(gre_tot>) * do regresson, get resdual, and get medans regress grad_gpa gre_tot predct resd,r bysort splt: summarze resd, detal * get devatons separately for the two groups gen dabs(resd-.3335) f splt gen dabs(resd-.65) f splt ttest d d, unpared 6

Dagnostcs and Smple Remedaton February 9, 4 Modfed Levene: Stata Output. ttest d d, unpared Two-sample t test wth equal varances Varable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] d.69.457.5948.594377.6948 d 9.34855.39844.73547.5784.8475 combned 4.545.6667.43357.76367.683 dff -.435.45866 -.6886.68656 Degrees of freedom: 38 Ho: mean(d) - mean(d) dff Ha: dff < Ha: dff! Ha: dff > t -.568 t -.568 t -.568 P < t.37 P > t.64 P > t.6993 Breusch-Pagan Test log eσ γ + γ X SSE usual regresson SSE SSR * SSR from regresson on squared resduals SSR SSE χ * BP n Breusch-Pagan n Stata. regress grad_gpa gre_tot grad_gpa Coef. Std. Err. t P>t [95% Conf.Interval] gre_total.38.89..4.58.748 _cons 3.3589.36 4.77..84994 3.75564. hettest Breusch-Pagan / Cook-Wesberg test for heteroskedastcty Ho: Constant varance Varables: ftted values of grad_gpa ch().8 Prob > ch.7758 7

Dagnostcs and Smple Remedaton February 9, 4 Normalty Test/Normalty Plots E.375 { e } MSE z th of n STATA COMMANDS regress grad_gpa gre_total predct resd pnorm resd sort resd gen pctle(_n-.375)/(_n+.5) gen eresde(rmse)*nvnorm(pctle) correlate eresd resd (obs4) eresd resd eresd. resd.943. Normal F[(resd-m)/s]..5.5.75. n +.5..5.5.75. Emprcal P[] /(N+) The Correlaton Test (obs4) eresd resd eresd. resd.943. TABLE B.6 n.5 5.88 6.888 7.898 8.96 9.9.98.95 3.964 5.977.987..86.838.85.86.87.879.96.947.966.98 Shapro Wlk test for Normalty W ( ) ( X X ) a X (). swlk resd Shapro-Wlk W test for normal data Varable Obs W V z Prob>z -------------+----------------------------------------------------------- resd 4.85894 5.576 3.66.5 8

Dagnostcs and Smple Remedaton February 9, 4 Error n Varables (Y). drop _all. use "D:\krtzervlle.DTA".. drop f v53>6 (9 observatons deleted). regress v36 v53 Number of obs 496 R-squared.379 Adj R-squared.374 Root MSE.468 v36 Coef. Std. Err. v53 6.8563.53965 _cons 37.35356.8848 gen FTv36+*nvnorm(unform()) (3 mssng values generated). regress FT v53 Number of obs 496 R-squared.699 Adj R-squared.694 Root MSE.43 FT Coef. Std. Err. v53 6.5387.787 _cons 38.33388.9685734 Error n Varables (X). drop _all. use "D:\krtzervlle.DTA".. drop f v53>6 (9 observatons deleted). regress v36 v53 Number of obs 496 R-squared.379 Adj R-squared.374 Root MSE.468 v36 Coef. Std. Err. v53 6.8563.53965 _cons 37.35356.8848. gen PIDv53+nvnorm(unform()). regress v36 PID Number of obs 496 R-squared.64 Adj R-squared.599 Root MSE.47 v36 Coef. Std. Err. PID 5.54367.469 _cons 4.934.8734 x Error n X Y x b where x X X b Y ( x + k ) Y x + Y k ( x + ) x + x k + k k b x Y x + k 9

Dagnostcs and Smple Remedaton February 9, 4 Transformng X Transformng Y Box-Cox λ Y ' Y Y ' log Y when λ λ Y Y β + βx n L( β, β, σ ) n exp ( Y β β X) ( πσ ) σ n λ L( β, β, σ, λ) n exp ( Y β β X) ( πσ ) σ e

Dagnostcs and Smple Remedaton February 9, 4 Generalzed Box-Cox n Stata θ Y β + β X λ use "D:\COURSES\PS55\EXAMPLES\clrp.dta", clear regress lhours stakes gen sqstakessqrt(stakes) regress lhours sqstakes replace lhours. f lhours boxcox lhours stakes boxcox lhours stakes,model(rhs) boxcox lhours stakes,model(theta) Nonlnear Example. regress lhours stakes Number of obs 34 R-squared.974 Root MSE 35.89 Lhours Coef. Std. Err. t stakes.488.47. _cons 54.36698 7.53458 7.3. gen sqstakessqrt(stakes). regress lhours sqstakes Number of obs 34 R-squared.3443 Root MSE 3.8 lhours Coef. Std. Err. t sqstakes.68.46686 3.36 _cons -4.849369 9.8979 -.53 Box Cox Example. boxcox lhours stakes,model(rhs) Number of obs 34 LR ch() 47.5 Prob > ch. lhours Coef. Std. Err. z /lambda.59465.573964.36 Estmates of scale-varant parameters Coef. Notrans _cons 4.79844 Trans stakes.795 /sgma 3.3397. boxcox lhours stakes,model(theta) Number of obs 34 LR ch() 97.49 Prob > ch. lhours Coef. Std. Err. z /lambda.479974.65778 3.77 /theta.5995.736 7.34 Estmates of scale-varant parameters Coef. Notrans _cons.56594 Trans stakes.695 /sgma.998667

Dagnostcs and Smple Remedaton February 9, 4 Lowess lowess lhours stakes lowess lhours stakes, f stakes<5 lowess lhours stakes, f stakes< lhours 5 5 Lowess smoother 5 5 5 stakes bandwdth.8 Lowess smoother lhours 3 Lowess smoother lhours 3 4 3 4 5 stakes bandwdth.8 4 6 8 stakes bandwdth.8