Physics 218 Exam III

Similar documents
Physics 218 Exam III

Physics 218 Comprehensive Exam

Physics 218 Exam II. Fall 2017 (all sections) October 25 th, 2017

Physics 218 Exam III

Physics 218 Exam I. Fall 2017 (all sections) September 27 th, 2017

Physics 218 Exam II. Spring 2017 (all sections) March 20 th, 2017

Physics 218 Exam II. Spring 2018 (all UP sections) March 19 th, 2018

Physics Grading Sheet.

Physics 218 Exam I. Spring 2018 (all UP sections) February 19 th, 2018

Physics Exam I

Physics Exam I

Physics Exam II

Physics 218 Exam I. Fall 2018 (all UP sections) September 26 th, 2018

Physics 218: FINAL EXAM April 29 th, 2016

Physics Grading Sheet.

Physics 206 Exam I. Spring 2019 (all UP sections) February 18 th, 2019

Physics 218 Exam I. Spring 2017 (all sections) February 13 th, 2017

Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow)

PHYSICS 221 SPRING EXAM 2: March 30, 2017; 8:15pm 10:15pm

Phys 270 Final Exam. Figure 1: Question 1

Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

PHYSICS 221 Fall 2013 EXAM 2: November 6, :15pm 10:15pm. Name (printed): Recitation Instructor: Section #:

On my honor, I have neither given nor received unauthorized aid on this examination.

PHYSICS 218 Exam 3 Fall, 2013

PHYSICS 218 Exam 3 Spring, 2014

Physics 101. Hour Exam 2 Spring Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Physics 106 Common Exam 2: March 5, 2004

Exam 3 Practice Solutions

PHYSICS 221 SPRING 2014

PHYSICS 221 SPRING 2015

1 MR SAMPLE EXAM 3 FALL 2013

Suggested Problems. Chapter 1

Please circle the name of your instructor: EB01: Beamish EB02: Fenrich EB03: Ruhl. EB04: Rahman EB05: Nedie EB06: Ropchan LAST NAME: FIRST NAME: ID#:

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

PHYSICS 221 Fall 2016 EXAM 2: November 02, :15pm 10:15pm. Name (printed): Recitation Instructor: Section #:

Physics 121, Final Exam Do not turn the pages of the exam until you are instructed to do so.

Physics 106 Sample Common Exam 2, number 2 (Answers on page 6)

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems

Rotation and Translation Challenge Problems Problem 1:

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

Problem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer

Rolling, Torque & Angular Momentum

8.012 Physics I: Classical Mechanics Fall 2008

TO GET CREDIT IN PROBLEMS 2 5 YOU MUST SHOW GOOD WORK.

Webreview Torque and Rotation Practice Test

Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:

Physics 101. Hour Exam II Fall 2008

Part Two: Earlier Material

Physics 218 Exam 3 Spring 2010, Sections

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYS 185 Final Exam December 4, 2012

8.012 Physics I: Classical Mechanics Fall 2008

I pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2

Name Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?

Physics I (Navitas) FINAL EXAM Fall 2015

Physics 121, Sections 1 and 2, Winter 2011 Instructor: Scott Bergeson Exam #3 April 16 April 21, 2011 RULES FOR THIS TEST:

Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.

Phys 2210 S18 Practice Exam 3: Ch 8 10

PHYSICS 221 Fall 2007 EXAM 2: November 14, :00pm 10:00pm

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER I 2012/2013

Physics 201 Midterm Exam 3

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

Faculty of Engineering and Department of Physics Engineering Physics 131 Final Examination Saturday April 21, 2018; 14:00 pm 16:30 pm

Final Exam April 30, 2013

AAPT UNITED STATES PHYSICS TEAM AIP 2018

PHYSICS 111 SPRING EXAM 2: March 6, 2018; 8:15-9:45 pm

III. Angular Momentum Conservation (Chap. 10) Rotation. We repeat Chap. 2-8 with rotatiing objects. Eqs. of motion. Energy.

Equilibrium: Forces and Torques

Your Name: PHYSICS 101 MIDTERM. Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon

PHYSICS 218 Final Exam Fall, 2014

Sample Final Exam 02 Physics 106 (Answers on last page)

Exam 1 January 31, 2012

What is the initial velocity (magnitude and direction) of the CM? Ans: v CM (0) = ( 7 /2) v 0 ; tan 1 ( 3 /2) 41 above horizontal.

Physics UCSB TR 2:00-3:15 lecture Final Exam Wednesday 3/17/2010

Exam 3 April 16, 2014

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

TO GET CREDIT IN PROBLEMS 2 5 YOU MUST SHOW GOOD WORK.

PHYSICS 111 SPRING EXAM 2: March 7, 2017; 8:15-9:45 pm

PHY218 SPRING 2016 Review for Exam#3: Week 12 Review: Linear Momentum, Collisions, Rotational Motion, and Equilibrium

AAPT UNITED STATES PHYSICS TEAM AIP 2011

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

DO NOT TURN PAGE TO START UNTIL TOLD TO DO SO.

Show all work in answering the following questions. Partial credit may be given for problems involving calculations.

Potential Energy & Conservation of Energy

Physics 101. Hour Exam I Fall Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Semester 1 Revision. Last modified: 05/06/2018

PHYSICS 218 FINAL EXAM Fall, 2005 Sections

Physics 218 Exam I *

Rotational Kinetic Energy

= o + t = ot + ½ t 2 = o + 2

PHYSICS 111 SPRING EXAM 2: March 6, 2018; 8:15-9:45 pm

Our Final Exam will be held on Monday, December 7 at 8:00am!

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Final Exam December 15, 2014

Name (please print): UW ID# score last first

December 2015 Exam Review July :39 AM. Here are solutions to the December 2014 final exam.

Description: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.

PHYSICS 107 FINAL EXAMINATION

EXAM-3 PHYS 201 (Fall 2006), 10/31/06

Transcription:

Physics 218 Exam III Fall 2017 (all sections) November 15 th, 2017 Please fill out the information and read the instructions below, but do not open the exam until told to do so. Rules of the exam: 1. You have 90 minutes (1.5 hrs) to complete the exam. 2. Formulae are provided to you with the exam on a separate sheet. Make sure you have one before the exam starts. You may not use any other formula sheet. 3. Check to see that there are 6 numbered (three double-sided) pages in addition to the scantron-like cover page. Do not remove any pages. 4. If you run out of space for a given problem, ask the proctor for an extra sheet of paper. Be sure to indicate at the problem under consideration that the extra space is being utilized so the graders know to look at it! 5. Calculators of any type are not allowed. Ensure that all your answers are in terms of the known variables given in the question. 6. Cell phone use during the exam is strictly prohibited. Please turn off all ringers as calls during an exam can be quite distracting. 7. Be sure to put a box around your final answer(s) and clearly indicate your work. Credit can be given only if your work is legible, clearly explained, and labelled. 8. All of the questions require you show your work and reasoning. 9. Have your TAMU ID ready when submitting your exam to the proctor. Fill out the information below and sign to indicate your understanding of the above rules Name: (printed legibly) Signature: UIN: Section Number: Instructor (circle one): Akimov Dierker Melconian

Short Problems: Exam III Fall 2017 2 A) A basketball, which one can approximate as a thin-walled hollow sphere of unknown mass and radius, starts from rest before rolling down a hill of height H. No mechanical energy is lost due to friction, and the ball rolls without slipping throughout the motion. What is the centre-of-mass velocity of the ball when it reaches the bottom of the hill? H 3.1 34.1 35.1 38.1 40.1 51.1 B) Consider the thin-walled hollow cylinder shown below which has a moment of inertia about its centre of mass I CM = 1 2 M(R2 1 + R 2 2). On the right side of the figure, three different axes of rotation are shown, all parallel to the axis through the centre-of-mass shown on the left: A is on the inner radius, B is to the left of centre by R 1 and below the centre by R 2, and C is on the outer surface of the cylinder. Determine which of the following moments of inertia correspond to each of the axes of rotation by writing A, B and C next to the correct expression. 3 2 M(R2 1 +R 2 2) M( 3 2 R2 1 + 1 2 R2 2) I CM = 1 2 M(R2 1 +R 2 2) Top view M( 1 2 R2 1 + 3 2 R2 2) 5 2 M(R2 1 +R 2 2) A R 2 R 1 C M( 5 2 R2 1 + 3 2 R2 2) M( 3 2 R2 1 + 5 2 R2 2) B 52.1 52.2 52.3

Exam III Fall 2017 3 C) Alice of mass M A = 60 kg and Bob of mass M B = 80 kg are standing on the frictionless ice surface at Spirit Ice Arena. They pushed off each other and observed that Bob was moving at +2î m/s after the push. Treat Alice and Bob as point-like particles (i.e. there is no rotation). For this problem, we expect numerical answers. (a) Remembering what she learned in PHYS 218, what speed did Alice calculate she was moving at? (b) What impulse was imparted to Alice, and what impulse was imparted to Bob? (Make sure the relative sign of these two vectors is correct). 3.2 46.1 46.2 48.1 D) A windmill of sorts is made up of a solid uniform disk of mass M and radius R, upon which four flaps of mass m and width R are mounted as shown. The system is free to rotate around a frictionless axis through the centre. (a) What is the moment of inertia of this object? 49.1 49.2 v = v 0 R (b) A ball of mass m is thrown horizontally and hits the very edge of one of the flaps with a speed v 0 and bounces in exactly the opposite direction with a speed v f. What is the angular speed of the windmill after the collision? 51.2 51.3 53.1 3.3 57.1 57.2 59.1

Exam III Fall 2017 4 Prob 1 A block of mass M = 5 kg is at rest on a smooth frictionless surface which makes an angle θ = 53.1 as shown. The block is attached to a solid uniform cylinder of mass m = 2 kg and radius R = 100 cm via a massless cord which is wound around the spool many times. There is no friction between the spool and its axle. For this problem, take g = 10 m/s 2 and note that sin53.1 = 4/5 and cos53.1 = 3/5. For part (b) of this problem, we expect a numerical result. (a) The figure shows all of the forces acting on the spool and block. For the spool: draw your positive sense of rotation about the spool s F axle axle in the figure. Fortheblock: defineyourcoordinatesystembydrawingitonthefigure, and break up any forces acting on the block into components along those axes (sketching it on the figure and labelling its magnitude in terms of known variables). θ (b) The block is released from rest. Find the angular acceleration of spool. mg n T T R Mg 1.1 9.1 9.2 4.1 10.1 21.1 51.4 54.1 55.1

Exam III Fall 2017 5 Prob 2 A hungry Yogi Bear (mass M) found a picnic basket across a deep ravine. He crosses a uniform beam of length L and mass m to reach his treats. One side of the beam is supported by strong hinge providing an unknown force F hinge and the other by a cable as shown. (a) The figure shows all of the forces acting on the beam. Draw your positive sense of rotation about the axle of the hinge in the figure, define your î and ĵ coordinate system and, for any forces not already along those axes (except F hinge ), draw and label with known variables (m,m,g,l and θ) the components along those axes on the figure. (b) What is the magnitude of the tension in the cable when Yogi is a distance x = 1 4L from the hinge? θ T x F hinge mg Mg (c) What is the moment of inertia of the beam+yogi about the axis of rotation defined by the hinge on the right side of the beam when Yogi is at the end (x = L)? (d) Just as Yogi reached the other end of the beam at x = L, the cable broke. What was the magnitude of the initial angular acceleration of the beam? 1.2 9.3 9.4 3.4 54.2 54.3 54.4 55.2 53.2 3.5 54.5 55.3

Exam III Fall 2017 6 Prob 3 Speedy Connor McDavid of mass M was skating up the ice to try and get past big Shea Weber (who has mass 4 3 M) for a breakaway. As McDavid skated with a velocity v 0 = v 0,x î + v 0,y ĵ, Weber suddenly moved toward him with a velocity u 0 = u 0,x î. The two collided and the instant replay showed poor McDavid getting crushed in this inelastic collision, resulting in his sliding backwards on the frictionless ice with a velocity v f = 1 10 v 0,xî as Weber went off in an different direction. (a) What were the initial momenta of the two skaters prior to the collision? v f u 0 v 0 (b) What impulse did Weber impart to McDavid during the collision? (c) What were the î and ĵ components of Weber s final velocity, u f, after the collision? 46.3 46.4 46.5 49.3 3.6 3.7 48.2 48.3