Revisiting gravitino dark matter in thermal leptogenesis

Similar documents
Models of New Physics for Dark Matter

Lecture 18 - Beyond the Standard Model

Antiproton Limits on Decaying Gravitino Dark Matter

Wino dark matter breaks the siege

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Antiproton Limits on Decaying Gravitino Dark Matter

Beyond the SM: SUSY. Marina Cobal University of Udine

Theory Group. Masahiro Kawasaki

General Gauge Mediation Phenomenology

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Exceptional Supersymmetry. at the Large Hadron Collider

Dark matter and missing energy - what is there apart from SUSY?

Searches for Supersymmetry at ATLAS

Gravitino LSP as Dark Matter in the Constrained MSSM

Trilinear-Augmented Gaugino Mediation

Long-Lived stau Signature in the LHC

Search for supersymmetry with disappearing tracks and high energy loss at the CMS detector

Higgs Signals and Implications for MSSM

SUSY Phenomenology & Experimental searches

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University

LHC Physics Part II: Searches for New Physics

Searches for Beyond SM Physics with ATLAS and CMS

Yukawa and Gauge-Yukawa Unification

LHC: Searches for New Physics Beyond the Standard Model

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:

arxiv: v1 [hep-ph] 29 Dec 2017 SUSY (ATLAS) André Sopczak on behalf of the ATLAS Collaboration

LHC Results in Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011

MSSM4G: MOTIVATIONS AND ALLOWED REGIONS

Carlos Sandoval Universidad Antonio Nariño On behalf of the ATLAS collaboration DIS Kobe, Japan

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Indirect signatures of. Gravitino Dark Matter p.1/33

Dark Matter Implications for SUSY

GUTs, Inflation, and Phenomenology

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Searching for sneutrinos at the bottom of the MSSM spectrum

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

Staus at the LHC. Koichi Hamaguchi (Tokyo U.) based on the works. KH, M.M.Nojiri, A.de Roeck (hep-ph/ );

Chapter 2 Theoretical Framework and Motivation

Status of ATLAS+CMS SUSY searches

SUSY searches at LHC and HL-LHC perspectives

R-hadrons and Highly Ionising Particles: Searches and Prospects

SUSY at Accelerators (other than the LHC)

Discovery potential for SUGRA/SUSY at CMS

Discovery Physics at the Large Hadron Collider

SuperWeakly Interacting Massive Particle Dark Matter

A light singlet at the LHC and DM

Universal Extra Dimensions

Searches for SUSY & Exotics with ATLAS

Supersymmetry and other theories of Dark Matter Candidates

Lecture 4 - Beyond the Standard Model (SUSY)

A natural solution to the gravitino overabundance problem

Dark Matter WIMP and SuperWIMP

SUSY at Accelerators (other than the LHC)

arxiv: v2 [hep-ph] 28 Nov 2008

Astroparticle Physics and the LC

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

The search for missing energy events at the LHC and implications for dark matter search (ATLAS and CMS)

Introduction to Supersymmetry

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Supersymmetry in Cosmology

Searches for Physics Beyond the Standard Model at the Tevatron

SUPERSYMETRY FOR ASTROPHYSICISTS

Sneutrino dark matter and its LHC phenomenology

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Gravitino Dark Matter with Broken R-Parity

Aspetti della fisica oltre il Modello Standard all LHC

A Simulated Study Of The Potential For The Discovery of the Supersymmetric Sbottom Squark at the ATLAS Experiment

Szuperszimmetria keresése az LHC-nál

How high could SUSY go?

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Natural SUSY and the LHC

Where is SUSY? Institut für Experimentelle Kernphysik

arxiv: v1 [hep-ph] 29 Sep 2016

Search for physics beyond the Standard Model at LEP 2

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Leptogenesis with type II see-saw in SO(10)

Little Higgs Models Theory & Phenomenology

What the LHC Will Teach Us About Low Energy Supersymmetry

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Decaying Dark Matter and the PAMELA anomaly

Gravitino Dark Matter p.1/42. with broken R-parity

The Standard Model of particle physics and beyond

New Models. Savas Dimopoulos. with. Nima Arkani-Hamed

EDMs and flavor violation in SUSY models

Gravitino Dark Matter with Broken R-Parity

SFB 676 selected theory issues (with a broad brush)

Search for Supersymmetry at LHC

String Theory in the LHC Era

Probing SUSY Contributions to Muon g-2 at LHC and ILC

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

SUSY w/o the LHC: Neutralino & Gravitino LSPs

Dark matter, Neutrino masses in MSSM after sattelite experiments

DPG Sascha Caron (Freiburg)

Hadronic Search for SUSY with MT2 variable

Where is the new physics at the LHC? M. E. Peskin Sakata100, Nagoya October, 2011

ATL-PHYS-PROC

SUSY GUTs, DM and the LHC

Physics Beyond the Standard Model at the LHC

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Transcription:

Revisiting gravitino dark matter in thermal leptogenesis Motoo Suzuki Institute for Cosmic Ray Research (ICRR) The University of Tokyo arxiv:1609.06834 JHEP1702(2017)063 In collaboration with Masahiro ibe and Tsutomu. T. Yanagida

R-parity R-parity is introduced for phenomenological consistency in Minimal Supersymmetric Standard Model (MSSM) R-parity charge assignment R=0 R=1 http://www7b.biglobe.ne.jp/~kcy05t/supersymmetry.html A. Prohibiting rapid proton decay B. Stable lightest SUSY particle (dark matter) https://arxiv.org/abs/hep-ph/9709356

Do we have theoretical ground on R-parity?

Theoretical ground on R-parity Gravity breaks all global symmetry R-parity can be embedded into gauge symmetry e.g. U(1)B-L gauge symmetry (adding NR) B-L parity (-1) B-L accidentally introduce R-parity SO(10) U(1) B L R-parity ( 1) B L R-parity is acceptable!!

However

Theoretical ground on R-parity However this framework has tension with perturbative SO(10) GUT There are two possibilities in R-parity breaking (and neutrino mass) A. Unbroken R-parity B. Broken R-parity e.g. VEV of fields in 126 representation e.g. VEV of fields in 16 representation 126 H.16 M.16 M (16 H.16 M )(16 H.16 M ) NR mass : B-L : -2 +1 +1 NR mass : B-L : -1 +1-1 +1 Non-perturbative R-parity is broken in perturbative SO(10) GUT!!

Theoretical ground on R-parity However this framework has tension with perturbative SO(10) GUT There are two possibilities in R-parity breaking (and neutrino mass) A. Unbroken R-parity B. Broken R-parity e.g. VEV of fields in 126 representation e.g. VEV of fields in 16 representation 126 H.16 M.16 M (16 H.16 M )(16 H.16 M ) NR mass : B-L : -2 +1 +1 NR mass : B-L : -1 +1-1 +1 R parity is broken in perturbative SO(10) GUT!! Non-perturbative R-parity is broken in perturbative SO(10) GUT!!

What is dark matter candidate in R-parity violation? In the following, consider bilinear R-parity dominated case Neutralino LSP cannot be dark matter W R = µ 0 il i H u Neutralino lifetime << the age of universe ( e.g. for ) µ 0 µ 10 7 Gravitino LSP can be dark matter [ 3/2! Z,h,Wl] m 3 3/2 192 M 2 PL µ 0 µ 2 Long Lifetime 3 1TeV 10 3/2 ' 10 20 7 µ sec >> O(10 17 sec) K. Ishiwata, S. Matsumoto, and T. Moroi (2008) m 3/2 µ 0 2 Gravitino dark matter!!

Consistency between gravitino dark matter and baryon asymmetry dark matter abundace 3/2 h 2 (m 3/2,m g,t R ) 0.12 Planck (2015) e.g. T R 10 9 GeV, m 3/2 m g 1 TeV g: gluon λ: gluino Ψ: gravitino Successful thermal leptogenesis occurs in following reheating temperature range 10 9 GeV. T R. 10 10 GeV W. Buchmuller et al. (2003) K. Kohri et al. (1999) Dark matter abundance Baryon asymmetry https://arxiv.org/pdf/hep-ph/ e.g. gluon and gluino collisions produce gravitino dark matter

Constraining gravitino dark matter in thermal leptogenesis

Collider constraints in neutralino NLSP Neutralino NLSP stable in detector : multi-jet with missing momentum search 2000 LHC constraints, neutralino NLSP 1500 m g éêgev 1000 excluded region at 95% CL ATLAS-CONF-2016-078 (2016) 0 1 m g é = m c é 500 m g m 3/2 excluded region 0 0 200 400 600 800 1000 1200 0êGeV m c é 1 neutralino-gluino 3/2 h 2 (m 3/2,m g,t R ) fixed TR 0.12 mass relation neutralino mass < 700 GeV is excluded!! Future LHC experiment may be able to search entire region!! neutralino-gravitino

Collider constraints in stau NLSP Stau NLSP stable in detector : long-lived charged particle searches excluded region Current LHC experiment exclude entire region!!

Conclusions R-parity can be embeded into B-L gauge symmetry However, R-parity can be broken in perturbative SO(10) GUT In R-parity violation model, gravitino is dark matter candidate Furthermote, gravitino dark matter consistent with thermal leptogenesis Future LHC may settle down this scenario; gravitino dark matter with leptogenesis If R-parity is conserved, constraints get more severe because NLSP always contributes gravitino dark matter abundance tot 3/2 h2 = 3/2 h 2 + Br 3/2 m 3/2 m NLSP NLSP h 2 =1 m g éêgev 1400 1200 1000 800 600 400 200 m 3ê2 = m b éhgut L T R =1.4 10 9 GeV m g é m 3ê2 W 3ê2 h 2 >0.12 0 0 200 400 600 800 m 3ê2 êgev

Back Up

Gravitino and gluino mass relation Theoretically predicted gravitino dark matter abundance 3/2 h 2 ' 0.09 m3/2 100 GeV T R 10 10 GeV 1+0.558 r 2 g m2 g 0.011 1+3.062 r 2 g m2 g m 2 3/2 m 2 3/2 Gravitino and gluino mass relation from dark matter abundance 3/2 h 2 TR 0.12!! apple log T R 10 10 GeV! m g = r g m 1/2 r g 2.5 m 3/2 m g

B-L parity breaking and R-parity breaking Broken B-L parity h16 H i = v B L Broken B-L parity induce Broken R parity e.g. W 16 H 16 M 10 H v B L 16 M 10 H v B L LH u Bilinear R-parity breaking!! 10H : SM higgs 16M : SM matter 16H : B-L breaking higgs ε : (small) coupling B-L parity breaking Bilinear R-parity breaking R parity is broken in perturbative SO(10) GUT!!

R-parity violation and its constraints R-parity violating superpotential W R = ijkd c i Q j L k + 1 2 B-L L 0 ijkl i E c j L c k + 1 2 L 00 ijkd c i U c j D c k + B + µ 0 il i H u L Constraints of baryon asymmetry Erase, 0, i, j, k : generation indices K. Hamaguchi et al. (2010) 00,µ 0 /µ < O(10 (6 7) ) Rapid proton decay 0 00 < 10 25 m SUSY 1TeV 2 ( p+!e + 0 & K. Abe et al. (2011) 10 34 year) R-parity violation must be small

What is dark matter candidate in R-parity violation? In the following, consider bilinear R-parity dominated case Neutralino LSP cannot be dark matter Neutralino lifetime << the age of universe ( e.g. for ) µ 0 µ 10 7 Gravitino LSP can be dark matter [ 3/2! Z,h,Wl] m 3 3/2 192 M 2 PL µ 0 µ 2 Long Lifetime 3 1TeV 10 3/2 ' 10 20 7 µ sec >> O(10 17 sec) K. Ishiwata, S. Matsumoto, and T. Moroi (2008) m 3/2 µ 0 2 Gravitino dark matter!!

Gravitino dark matter abundance e.g. gluon and gluino collisions produce gravitino dark matter g: gluon λ: gluino Ψ: gravitino https://arxiv.org/pdf/hep-ph/0701104.pdf Thermally produced gravitino dark matter abundance 3/2 h 2 m3/2 T R ' 0.09 100 GeV 10 10 1+0.558 r! 2 g m2 g GeV m 2 3/2 0.011 1+3.062 r 2 g m2 g m 2 3/2! apple log J. Ellis et al. (2016) T R 10 10 GeV! m g = r g m 1/2

Assumption A. Bilinear R-parity violation µ 0 µ < 10 11 1TeV m 3/2 3/2 E, Carquin et.al. (2016) S. Ando and K. Ishiwata(2016) B. gravitino dark matter in thermal leptogenesis C. m3/2< 1 TeV, 10 9 GeV < TR < 10 10 GeV Searching this scenario

Gluino mass upper bound

Gluino mass upper bound 3/2 h 2 TR 0.12 Latest reheating temperature upper bound in thermal leptogenesis T R. 1.4 10 9 GeV S. Antusch and A. M. Teixeira (2006) T R =10 9 GeV T R =1.4 10 9 GeV 2000 W 3ê2 h 2 >0.12 1400 W 3ê2 h 2 >0.12 m g éêgev 1500 1000 500 m 3ê2 = m b éhgut L allowed region m g é m 3ê2 m g éêgev 1200 1000 800 600 400 200 m 3ê2 = m b éhgut L allowed region m g é m 3ê2 0 0 200 400 600 800 1000 1200 m 3ê2 êgev 0 0 200 400 600 800 m 3ê2 êgev m g < 2 TeV m g < 1.6 TeV

LHC constraints

NLSP contribution into dark matter abundance Gravitino dark matter abundance from NLSP decay tot 3/2 h2 = 3/2 h 2 + Br 3/2 m 3/2 m NLSP NLSP h 2. conserving decay into gravitino NLSP R-parity R ' 5 10 3 m3/2 2 1 TeV sec 100GeV m NLSP violating decay into the other SM particles R-parity R 10 NLSP ' 10 12 7 2 µ 1TeV sec µ 0 m NLSP 5. R NLSP << R NLSP NLSP contribution is neglibible for dark matter abundance

Neutralino NLSP Neutralino production by gluino decay all squark decoupled limit no mass degeneracy gluino decaying into two squarks and a neutralino ATLAS-CONF-2016-078 (2016) Neutralino stable in detector c 0 1 & 10 6 m 1TeV m 0 1! 3 10 11 2 µ 10 µ 0 tan 2. K. Hamaguchi et al. (2007) 0 multi-jet with missing momentum search ATLAS-CONF-2016-078 (2016)

Stau NLSP Stau production all squark decoupled limit no mass degeneracy stau cross section gluino cross section direct Drell-Yan stau pair production Stau stable in detector 1TeV 10 c & 10 7 11 2 µ 10 m µ 0 tan m 2. K. Hamaguchi et al. (2007) long-lived charged particle searches CMS-PAS-EXO-15-010 (2015)

Stau and gluino constraint Stau cross section upper limit Gluino production cross section C. Borschensly et.al. (2014) stau CMS-PAS-EXO-15-010 (2015) Gluino and stau mass constraint by Stau cross section upper bound > Gluino production cross section

Collider constraints in stau NLSP Gluino and stau mass constraint 2000 LHC constraints, stau NLSP m g éêgev 1500 1000 500 direct (Drell Yan) excluded region e.g. T R 10 9 GeV, m 3/2 m g 1 TeV m g é = m t é 0 0 200 400 600 800 1000 1200 1400 m t éêgev direct + gluino decay stau-gluino e.g. T R 10 9 GeV, m 3/2 m g 1 TeV m g éêgev 1400 1200 1000 800 600 400 200 m 3ê2 = m b éhgut L T R =1.4 10 9 GeV m g é m 3ê2 W 3ê2 h 2 >0.12 0 0 200 400 600 800 m 3ê2 êgev mass relation excluded region stau-gravitino Current LHC experiment exclude entire region!!

Physical gluino mass and gaugino mass at GUT scale 3.0 2.8 r g é 2.6 2.4 m g = r g m 1/2 2.2 500 1000 1500 2000 2500 3000 m g éêgev 3/2 h 2 ' 0.09 m3/2 100 GeV T R 10 10 GeV 1+0.558 r 2 g m2 g 0.011 1+3.062 r 2 g m2 g m 2 3/2 m 2 3/2!! apple log T R 10 10 GeV!

R-parity violation model in SO(10) 16 M 10 H 16 H 16 H v B L X m 3/2 R 1 0 1/2 0 1/4 5/2 2 Table 1: R-charges of matter fields, Higgs fields and SO(10) singlets. A. Superpotential W = 10 H 16 M 16 M + 16 H 16 H 16 M 16 M + X(16 H 16 H vb 2 L) B. Bilinear R-parity violation by right-handed sneutrino VEV C. mu-term Yukawa term νr mass term Bilinear R-parity breaking term B-L breaking K = vb 4 L16 M 16 H W m 3/2 vb 5 D E LN R NR ' vb 3 L m 3/2 µ 0 = vb 3 Lm 3/2 W m 3/2 10 H 10 H Finally, µ 0 µ v3 B L

R-parity violation model in SO(10) 16 M 10 H 16 H 16 H v B L X m 3/2 R 1 0 1/2 0 1/4 5/2 2 Table 1: R-charges of matter fields, Higgs fields and SO(10) singlets. Bilinear R-parity violation Trilinear R-parity violation W 16 M 16 H W 16 H 16 M 16 M 16 M Small R-parity violation!! µ 0 µ,, 0, 00 v 3 B L (v B L 10 3 4 )