Non-local 1/m b corrections to B X s γ

Similar documents
Theory of B X u l ν decays and V ub

B γlν and the B meson distribution amplitude

Inclusive determinations of V ub and V cb - a theoretical perspective

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35

Hadronic B decays from SCET. Christian Bauer LBNL FPCP 2006, Vancouver

Introduction to Operator Product Expansion

Inclusive B decay Spectra by Dressed Gluon Exponentiation. Einan Gardi (Cambridge)

Angular Analysis of the Decay

QCD, Factorization, and the Soft-Collinear Effective Theory

Hadronic Effects in B -Decays

Probing Beyond the Standard Model with Flavor Physics

Soft-Collinear Effective Theory and B-Meson Decays

SCET for Colliders. Matthias Neubert. Cornell University. Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen)

QCD factorization in B decays ten years later

B Kl + l at Low Hadronic Recoil

Soft Collinear Effective Theory: An Overview

2 2 ω 0 = m B m D. B D + ρ B D 0 π, B D 0 π,

Analysis of the Isgur-Wise function of the Λ b Λ c transition with light-cone QCD sum rules

The Heavy-Light Form Factor

Hadronic B/D decays in factorization assisted topology diagram approach

Inclusive B decay Spectra by Dressed Gluon Exponentiation

Inclusive radiative electroweak penguin decays:

Charm CP Violation and the electric dipole moment of the neutron

Part I: Heavy Quark Effective Theory

Theory of hadronic B decays

Introduction to the Soft - Collinear Effective Theory

Hadronic B decays from SCET

QCD and Rescattering in Nuclear Targets Lecture 2

V ub without shape functions (really!)

Status of Jet Physics

The inclusive determination of V ub

Polarization Study in B u,d,s,c Decays to Vector Final States

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

The phenomenology of rare and semileptonic B decays

Theory and Phenomenology of CP Violation

Theoretical study of rare B/D decays

HADRONIC B DECAYS. My Ph.D. work. Maxime Imbeault. Université de Montréal 24/04/2009

Proceedings of the VIIIth International Workshop on Heavy Quarks and Leptons HQL06

Light-Cone Sum Rules with B-Meson Distribution Amplitudes

Annihilation-Type Semileptonic B-Meson Decays

Introduction to Perturbative QCD

Pion Transition Form Factor

Elementary Particle Physics

QCD Factorization and PDFs from Lattice QCD Calculation

Introduction to Quantum Chromodynamics (QCD)

QCD running in neutrinoless double beta decay: Short range mechanism

Recent results from rare decays

Why Glauber Gluons Are Relevant?

Introduction to Jets. Hsiang nan Li ( 李湘楠 ) Academia Sinica, Taipei. July. 11, 2014

A pnrqcd approach to t t near threshold

Precision Jet Physics At the LHC

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD Effects in Exclusive Rare B-Meson Decays

Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings

Is the up-quark massless? Hartmut Wittig DESY

Recent V ub results from CLEO

Effective Field Theory

Hadronic decay of top quarks as a new channel to search for the top properties at the SM & physics beyond the SM

Dipole operator constraints on composite Higgs models

Generalized Parton Distributions in PT

Single Color-Octet Scalar Production at the LHC

B Physics Beyond CP Violation

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

arxiv:hep-ph/ v4 18 Nov 1999

Boosting B meson on the lattice

Pseudo-Distributions on the Lattice

2. HEAVY QUARK PRODUCTION

Introduction to perturbative QCD and factorization

All order pole mass and potential

Electroweak Theory: 2

arxiv: v1 [hep-ph] 23 Oct 2010

V cb : experimental and theoretical highlights. Marina Artuso Syracuse University

arxiv:hep-ph/ v2 7 Mar 2002

PoS(Kruger 2010)048. B X s/d γ and B X s/d l + l. Martino Margoni SLAC-PUB Universita di Padova and INFN

Based on arxiv:0812:4320 In collaboration with A. Dedes, J Rosiek. Informal CIHEP Pizza Lunch February 6, 2009

AN INTRODUCTION TO QCD

Towards Precision Flavour Physics

Electroweak measurements at HERA

2 Introduction to SCET

CP Violation sensitivity at the Belle II Experiment

Recent results on CKM/CPV from Belle

OPE for B-meson distribution amplitude and dimension-5 HQET operators

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

CKM Matrix and CP Violation in Standard Model

Charged Pion Polarizability & Muon g-2

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space

Effective Field Theory

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University

Determination of Vxb

Electroweak Probes of Three-Nucleon Systems

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12

New Physics search in penguin B-decays

Factorization, the Light-Cone Distribution Amplitude of the B-Meson and the Radiative Decay B γlν l

Introduction to Quantum Chromodynamics (QCD)

Light Stop Bound State Production at the LHC. Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim at Yonsei U.

arxiv:hep-ph/ Jul 1992

Hadron Structure from Lattice QCD

Long distance weak annihilation contribution to

Transcription:

Non-local 1/m b corrections to B X s γ Michael Benzke TU München September 16, 2010 In collaboration with S. J. Lee, M. Neubert, G. Paz Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 1 / 26

Outline 1 Motivation 2 Theoretical Framework Soft-Collinear Effective Theory Matching Factorization 3 Irreducible Uncertainties 4 Summary Based on arxiv:1003.5012 Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 2 / 26

Motivation Radiative decay B X s γ is mediated by FCNC Occurs only at loop level in the Standard Model Comparison of experimental and theoretical ũ ũ branching ratios can strongly constrain new γ physics models Experimental background complicates determination Need cut on photon energy BF( B X s γ)= (3.02 ± 0.10 ± 0.11) 10 4 for E γ > 2 GeV BF( B X s γ)= (3.45 ± 0.15 ± 0.40) 10 4 for E γ > 1.7 GeV Belle Collaboration 09 c) 30000 Theoretical analysis must be 20000 performed in this endpoint 10000 region 0 Photons / 50 MeV -10000-20000 -30000 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 c.m.s Eγ [GeV] Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 3 / 26 b W s

Motivation The Decay rate is calculated by considering the cut of a B-meson forward matrix element dγ( B X s γ) 1 M B d 3 p γ Disc im( B B) In the endpoint region the Jet X s has a large energy O(m b ) but small invariant mass O( m b Λ QCD ) Large logarithms in partonic calculation The partonic result is known to O(α 2 s ) and for E γ > 1.6 GeV BF( B X s γ)= (3.15 ± 0.23) 10 4 for E γ > 1.6 GeV M. Misiak et al. 06; Becher, Neubert 06 Errors Higher order perturbative uncertainties: 3 % Parametric uncertainties: 3 % m c -interpolation ambiguity: 3 % non perturbative uncertainties: 5 % Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 4 / 26

Overview Goal Systematically analyze the non-perturbative corrections in the endpoint region at subleading power in 1/m b Use an effective field theory to resum large logarithms and to generate a systematic expansion in a small parameter The appropriate effective field theories are SCET (hc,hc,s) and HQET C. W. Bauer et al. 01 Light-cone directions n, n Hard-collinear momentum n p hc Λ, n p hc m b In SCET the rate factorizes into perturbatively calculable and hadronic parts Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 5 / 26

Theoretical Framework Starting point: Weak effective Lagrangian H eff = G F 2 X p=u,c General procedure: λ p C 1Q p 1 + C2Qp 2 + X i=3,...,10 C i Q i + C 7γQ 7γ + C 8g Q 8g! + h.c. After integrating out hard modes as well as the small components of the hard-collinear fields the SCET Lagrangian only contains (anti-)hard-collinear and soft fields These fields exhibit a certain scaling in powers of λ = Λ m b Match the relevant operators of the weak effective Hamiltonian onto the SCET fields This yields a systematic expansion in powers of λ Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 6 / 26

Matching procedure Matching at leading power hc Q 7 s Q 7 ξ hc b h Corresponds to Q 7 = em b 8π 2 sσ µν(1 + γ 5 )F µν b em b n/ 4π 2 e im bv x ξ hc in A/em 2 (x)(1 + γ 5)h(x ) Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 7 / 26

Matching procedure At subleading power e.g. hc Q 8 s A ξhc Q 8 q soft A hc b h Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 8 / 26

Matching procedure At subleading power e.g. hc Q 8 s A ξhc Q 8 q soft A hc b SCET-Lagrangian insertion suppressed by another λ h Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 8 / 26

Matching procedure At subleading power e.g. hc Q 8 s A ξhc Q 8 q soft A hc b SCET-Lagrangian insertion suppressed by another λ h Q 7 A s Q 7 hc A hc ξ hc b h Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 8 / 26

Matching procedure At subleading power e.g. hc Q 8 s A ξhc Q 8 q soft A hc b SCET-Lagrangian insertion suppressed by another λ h Q 7 A s Q 7 hc A hc ξ hc b h Additional hard-collinear field suppressed by another λ Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 8 / 26

Decay rate Decay rate amplitude squared Leading power contribution to the decay rate: Interference of Q 7 with Q 7 The Rate factorizes at leading power dγ LO H J S h Q 7 hc Korchemsky, Sterman 94; Bauer, Pirjol, Stewart 01 The hard function H and the jet function J parameterize physics at the scales m b and m b Λ respectively and are perturbatively calculable The shape function S is a Fourier transform of a non-local HQET matrix element S(ω) = dt 2π e iωt B(v) h(tn)... h(0) B(v) The leading order shape function ( meson PDF ) is related to the measured photon spectrum ξhc hc Q 7 h Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 9 / 26

Calculation at subleading power Subleading contributions originating from the interference Q 7 Q 7 Lee, Stewart 04; Bosch, Neubert, Paz 04; Beneke, Campanario, Mannel, Pecjak 04 But other operators of the weak effective Hamiltonian also contribute Some of them are suppressed by small Wilson coefficients or CKM elements Important Operator combinations Q 1 Q 7, Q 7 Q 8 and Q 8 Q 8 ( ) (Q 1 Q 1 and Q 1 Q 8 only appear at O 1 ) mb 2 Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 10 / 26

Calculation at subleading power Distinguish contributions by their factorization properties 1. Direct photon contributions hc A hc hc Q 8 ξ hc Q 8 αs m b in endpoint region h h Factorizes dγ H j S with the subleading jet function j Contributions of this type can be written as a local OPE when integrated to the total rate Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 11 / 26

Calculation at subleading power 2. Resolved photon contributions hc hc q soft q soft Λ Q 8 A hc Q 8 m b h h (in this case double resolved) Factorizes dγ res H J s J J The J are new jet functions corresponding to the uncut hard-collinear propagators Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 12 / 26

Calculation at subleading power 2. Resolved photon contributions hc hc q soft q soft Λ Q 8 A hc Q 8 m b h h The subleading shape function s is a non-local HQET matrix element It cannot be separately extracted from the photon spectrum It is non-local in two light-cone directions No OPE even in integrated rate Hadronic uncertainty Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 12 / 26

Factorization Formula In the endpoint region the rate factorizes dγ H J S + 1 X H ji S + 1 X H J si m b m b + 1 X H J si J + 1 X «1 H J si J J + O m b m b m 2 b Visualize as J J J B H J S H B + B H J S H B + B H J S H B Consider all relevant combinations in turn Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 13 / 26

Interference of Q 1 Q 7 hc hc s Non-perturbative contribution to total rate O ( 1 m 2 c dγ res 1 de γ m b g 17 (ω, ω 1 ) = dω δ(ω + p + ) dr 2π e iω1r ) (Voloshin 96) [ ( )] dω 1 m 2 1 F c g 17 (ω, ω 1 ) ω 1 + iε 2E γ ω 1 dt 1 2π e iωt B h(tn)... Gs αβ (r n)... h(0) B M B Expand F for m c m b Reproduce Voloshin term in total rate λ 2 9m 2 c Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 14 / 26

Interference of Q 1 Q 7 Estimate the possible contribution to the partial rate Γ(E 0 ) = E 0 de γ dγ de γ PT invariance implies that all considered subleading shape functions are real Moment constraints dω dω1 g 17 (ω, ω 1 ) = 2λ 2 0.6 0.4 0.2 dωω dω1 g 17 (ω, ω 1 ) = ρ 2 Symmetry dωg17 (ω, ω 1 ) = dωg 17 (ω, ω 1 ) 2 1 1 2 0.2 0.4 0.6 Model function e ω 2 1 σ 2 Λ 2 2σ 2 h 17 (ω 1 ) = dωg 17 (ω, ω 1 ) = 2λ 2 ω1 2 Λ2 2π 1.7... 4.0 % non-perturbative uncertainty due to Q 1 Q 7 contribution (possible correction to partonic rate) Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 15 / 26

Interference of Q 8 Q 8 hc hc hc s s dγ res de γ e2 s 8πα s m b dω δ(ω + p + ) dω 1 ω 1 + iε dω 2 ω 2 iε g 88(ω, ω 1, ω 2 ) g 88 (ω, ω 1, ω 2 ) = 1 M B B h(tn)... s(tn + u n) s(r n)... h(0) B F.T. Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 16 / 26

Interference of Q 8 Q 8 hc hc hc s s dγ res de γ e2 s 8πα s m b dω δ(ω + p + ) dω 1 ω 1 + iε dω 2 ω 2 iε g 88(ω, ω 1, ω 2 ) g 88 (ω, ω 1, ω 2 ) = 1 M B B h(tn)... s(tn + u n) s(r n)... h(0) B F.T. Important subtlety Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 16 / 26

Interference of Q 8 Q 8 hc hc dγ res de γ e2 s 8πα s m b dω δ(ω + p + ) dω 1 ω 1 + iε dω 2 ω 2 iε g 88(ω, ω 1, ω 2 ) g 88 (ω, ω 1, ω 2 ) = 1 M B B h(tn)... s(tn + u n) s(r n)... h(0) B F.T. Consider scale dependence of direct contribution dγ dir de γ e2 s C F α s 4πm b ( dω 2 ln m ) b(ω + p + ) µ 2 + 1 S(ω) Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 16 / 26

Interference of Q 8 Q 8 How does the scale dependence cancel? Consider the asymptotic form of g 88 for ω 1,2 Λ QCD g 88(ω, ω 1, ω 2) C F θ(ω 1)ω 1 ɛ Z 1 (4π) 2 ɛ δ(ω1 ω2) dω S(ω )(ω ω) ɛ +... Γ(1 ɛ) ω Convolution integral is UV divergent! Introduce cutoff and consider high and low momentum part of the convolution separately dγ res e2 s 8πα s de γ m b e2 s C F 8πα s 2π 2 m b Λ dω 1 dω δ(ω + p + ) ω 1 + iε ( dω ln Λ(ω + p +) µ 2 + 2 Λ dω 2 ω 2 iε g 88(ω, ω 1, ω 2 ) ) S(ω) Scale dependence cancels Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 17 / 26

Interference of Q 8 Q 8 - Numerical Estimate This time no moment constraint for g 88 Assume that the convolution of jet and shape function yields a value of O(Λ QCD ) But suppressed by e 2 s 0.3... 1.9 % non-perturbative uncertainty due to Q 8 Q 8 contribution Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 18 / 26

Interference of Q 7 Q 8 hc s s dγ res αs de γ m b Z» 1 ω 1 + iε + 1 ω 2 iε Z dω δ(ω + p +) dω 1 Z g (i) 1 78 (ω, ω1, ω2) = B h(tn)... h(0) X M B q dω 2 ω 1 ω 2 + iε «g (1) 78 (ω, ω1, ω2) 1 ω 1 + iε 1 ω 2 iε e q q(r n)... q(u n) B F.T. «g (5) 78 (ω, ω1, ω2) Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 19 / 26

Interference of Q 7 Q 8 Due to the sum over flavors it is possible to roughly estimate the effects through vacuum insertion approximation Lee, Neubert, Paz 06 Z dω g (i) 78 (ω, ω1, ω2) VIA = f 2 espec B M B 1 1 «φ B ( ω 1)φ B ( ω 2) 8 Nc 2 2.8... 0.3 % non-perturbative uncertainty due to Q 7 Q 8 contribution Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 20 / 26

Interference of Q 7 Q 8 Alternatively it is possible to relate the effect to the measured isospin asymmetry Wigner-Eckart Theorem B h(tn)... h(0) q e q q(r n)... q(u n) B = 1 6 Λ 0 ± 1 2 Λ 1 = 1 6 (Λ 0 Λ 1 ) + e spec Λ 1 Isospin asymmetry 0 Λ 1 ; averaged rate Γ avg Λ 0 SU(3) symmetry Λ 0 = Λ 1 M. Misiak 09 4.4... 5.6 % non-perturbative uncertainty for an SU(3) breaking of 30 % Can be reduced by improved measurement of isospin asymmetry Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 21 / 26

Summary - The Numbers Operators Effect Q 1 Q 7 1.7... 4.0 % Q 8 Q 8 0.3... 1.9 % Q 7 Q8 VIA 2.8... 0.3 % Q 7 Q exp 8 4.4... 5.6 % Therefore the total hadronic uncertainty Γ(E 0) Γ part (E 0 ) Γ part (E 0 ) to the integrated rate is 4.8 % + 5.6 % by VIA 6.4 % + 11.5 % by Isospin Asymmetry (95 % CL) 4.0 % + 4.8 % by Isospin Asymmetry (central value without error) Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 22 / 26

Summary In order to estimate the non-perturbative uncertainty in the B X s γ branching ratio the subleading order of the power expansion in 1 m b must be considered At this order the decay rate obeys a new factorization formula dγ H J S + 1 X H ji S + 1 X H J si m b m b + 1 X H J si m J + 1 X «H J si b m J J 1 + O b m 2 b Effects of the new non-local matrix elements can only be estimated A careful consideration of everything we know yields a non-perturbative uncertainty of ±5 % to the partial decay rate Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 23 / 26

Outlook What is left to be done? The new soft functions will affect the extraction of heavy-quark parameters from moments of the B X s γ photon spectrum Need models for the subleading shape functions The new jet functions J contain strong phases, that generate contributions to direct CP violation Identify the new contributions and estimate their size Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 24 / 26

Outlook What is left to be done? The new soft functions will affect the extraction of heavy-quark parameters from moments of the B X s γ photon spectrum Need models for the subleading shape functions The new jet functions J contain strong phases, that generate contributions to direct CP violation Identify the new contributions and estimate their size Thank you for your attention! Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 24 / 26

Bonus Slides Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 25 / 26

Kinematics Jet momentum p b = p + p γ p = (m b, 0, 0, 0) (E γ, 0, 0, E γ ) p 2 = m b (m b 2E γ ) Scaling of hard-collinear fields 0 T ξ(x) ξ(y) 0 = n/ n/ n/n/ 0 T ψ(x) ψ(y) 0 2 2 d 4 k n/ n/ ik/ n/n/ = (2π) 4 2 k 2 + iɛ 2 e ik(x y) d 4 k i n k = (2π) 4 k 2 + iɛ e ik(x y) λ 2 1 λ = λ ξ λ 1/2 Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München 26 / 26