Magnetic Deflection of Electrons

Similar documents
Electric Deflection of Electrons

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field.

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field.

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field.

CHARGE TO MASS RATIO FOR THE ELECTRON

Ratio of Charge to Mass for the Electron

THE CHARGE-TO-MASS RATIO OF THE ELECTRON

This lab was adapted from Kwantlen University College s Determination of e/m lab.

Pre Lab for Ratio of Mass to. Charge of an Electron

Lab in a Box Measuring the e/m ratio

Laboratory 14: Ratio of Charge to Mass for the Electron

CHARGED PARTICLES IN FIELDS

Experiment 2 Deflection of Electrons

Experiment 5 Deflection of Electrons

Brown University PHYS 0060 Physics Department LAB B -190

Charge-to-mass ratio for the electron

Finding e/m. Purpose. The purpose of this lab is to determine the charge to mass ratio of the electron. Equipment

EXPERIMENT NO. 2. Electrostatic and Magnetic Deflection of Electrons in a Cathode Ray Tube

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

THE CHARGE-TO-MASS RATIO OF THE ELECTRON (e/m)

Lab 1: Determination of e/m for the electron

Chapter 12. Project 4 Classical Physics. Experiment A: The Charge to Mass Ratio of the Electron

Deflection of Electrons

B = 8 0 NI/[r (5) 3/2 ],

Ratio of Charge to Mass (e/m) for the Electron

PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil

KE = 1 2 mv2 = ev. (1)

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

MAGNETISM LAB: The Charge-to-Mass Ratio of the Electron

Experiment V Motion of electrons in magnetic field and measurement of e/m

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law

The Ratio of Charge to Mass (e/m) for an Electron

Charge to Mass Ratio of Electron Lab 11 SAFETY

Lab 7 - ELECTRON CHARGE-TO-MASS RATIO

The e/m Ratio of the Electron

Homework 2: Forces on Charged Particles

The Measurement of e/m

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION

You should be able to demonstrate and show your understanding of:

Electric Potential Energy

Lab 6 - ELECTRON CHARGE-TO-MASS RATIO

Charge to Mass Ratio of The Electron

Lab 10 Circular Motion and Centripetal Acceleration

Experiment 2-3. What s Happening Between Currents? -Lorenz Force-

Lab 5 - ELECTRON CHARGE-TO-MASS RATIO

Instruction Manual. from. Seventh Edition. These Manual pages reprinted with kind permission.

Lab 5 - ELECTRON CHARGE-TO-MASS RATIO

Determining the Charge to Mass Ratio (e/m) for an Electron

Magnetic Fields & Forces

e/m APPARATUS Instruction Manual and Experiment Guide for the PASCO scientific Model SE D 5/ PASCO scientific $5.

Magnetic Fields Permanent Magnets

Other Formulae for Electromagnetism. Biot's Law Force on moving charges

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields

Chapter 17 Electric Potential

Lab 6 - Electron Charge-To-Mass Ratio

Motion of a charged particle in an Electric Field

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields

MEASUREMENT OF THE CHARGE TO MASS RATIO (e/m e ) OF AN ELECTRON

PhysicsAndMathsTutor.com 1

Electrostatic and Magnetic Deflection of Electrons in a Cathode Ray Tube

Chapter 19. Magnetism

Magnetic Fields. or I in the filed. ! F = q! E. ! F = q! v! B. q! v. Charge q as source. Current I as source. Gauss s Law. Ampere s Law.

Torque on a Current Loop

Instruction Manual for EP-20 e/m of the Electron Apparatus

PHYSICS 12 NAME: Magnetic Field and Force

Chapter 29. Magnetic Fields

Set of sure shot questions of Magnetic effect of Current for class XII CBSE Board Exam Reg.

Magnetic Fields & Forces

Magnetic fields. The symbol we use for a magnetic field is B. The unit is the tesla (T). The Earth s magnetic field is about 5 x 10-5 T.

Problem Set 6: Magnetism

Magnetic Force. A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire?

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

Charge to Mass Ratio of the Electron

21 MAGNETIC FORCES AND MAGNETIC FIELDS

Downloaded from

Chapter 21. Magnetic Forces and Magnetic Fields

AP Physics Electromagnetic Wrap Up

Circuits Capacitance of a parallel-plate capacitor : C = κ ε o A / d. (ρ = resistivity, L = length, A = cross-sectional area) Resistance : R = ρ L / A

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.

Charge to Mass Ratio of The Electron

Charge to mass Ratio. Nature of the Atom: Dalton's Contributions to Science. 6) qm ratio notes.notebook. December 13, 2018

Electromagnetic Induction

Lab 5. Current Balance

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation,

Electron Diffraction

LABORATORY V MAGNETIC FIELDS AND FORCES

Electromagnetism Notes 1 Magnetic Fields

XII PHYSICS ELECTROMAGNETISM] CHAPTER NO. 14 [MAGNETISM AND LECTURER PHYSICS, AKHSS, K.

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go..

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields

CHAPTER 20 Magnetism

Chapter 1 The discovery of the electron 1.1 Thermionic emission of electrons

Lecture PowerPoints. Chapter 17 Physics: Principles with Applications, 6 th edition Giancoli

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level)

General Physics II. Magnetism

Equipotential and Electric Field Mapping

Equipotential and Electric Field Mapping

MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM VISUAL PHYSICS ONLINE

Chapter 4: Magnetic Field

Electric Field Mapping

Transcription:

Magnetic Deflection of Electrons Objective Materials 1. Banana leads 2. Cathode ray tube 3. Fisher 1V/30V power supply (set to 30V) 4. Fluke digital multimeter 5. High voltage power supply 6. Solenoid coil Introduction In this experiment we shall study magnetic deflection of electrons using the same CRT as was used to study electric deflection. Instead of applying a deflecting potential to the plates we will place solenoids nearby to provide a magnetic field and study the relationship between the solenoid current and deflection of the electron beam. We shall also measure Earth s magnetic field. However, expect only good approximate agreement with the literature value of about 5 10 5 T for Earth s magnetic field in Mississippi, because of possible modifications by nearby steel and magnets in the building.! Figure 1: CRT, as shown in the lab Electric Deflection of Electrons. 1

As in the experiment on electric deflection, electrons are accelerated through a potential difference V acc = V C + V B and thus obtain kinetic energy 1 2 mv2 = ev acc where e is the magnitude of the electron charge, from which we may compute speed. The magnetic force F acting on a charge of magnitude q moving with velocity v in a magnetic field B is given by the vector equation F = q( v B) The magnitude of this force is F = qvb sin θ, where θ is the angle between the velocity vector and the magnetic field vector. The direction of this force is perpendicular to the plane containing the velocity vector and the magnetic field vector. Of course there are two directions perpendicular to this plane; the following rule applies. Right-Hand Rule +y Rotate the velocity vector into the magnetic field vector through the angle that is less than 180. The direction of advance of a right-handed screw is the direction of force on a positive charge. The force on a negative charge is opposite this. (See your text for other statements of the right-hand rule.) +z force on + charge ~B force on +x charge Figure 2 Because the force is perpendicular to the motion of the charge, the direction of motion changes but not the speed. We can see this from the fact that work changes kinetic energy but no work is done because force is perpendicular to displacement at all times. If the velocity is perpendicular to the magnetic field, the resulting motion is circular, as illustrated in Figure 3a. Using Newton s Second Law, F = m a, and the expression for centripetal acceleration under uniform circular motion, a = v 2 /R. Now because sin 90 = 1 we get evb = mv2 R. In this experiment we shall restrict motion to a very small fraction of the circle (see Figure 3b). For such restrictions the direction of motion doesn t change much; consequently the direction of force doesn t change much. We shall approximate the direction of force (thus acceleration) to be unchanged. With these approximations the lateral displacement y = 1 2 at2. From Newton s Second Law we get the magnitude of the acceleration a = F m = evb m, 2

~B R ~F e ~F e ~B e L y (a) (b) Figure 3: The magnetic field B is out of the page. and we get the time from t = L v. Substituting these expressions for a and t into... we obtain The magnetic field inside a long solenoid is given by y = ebl2 2mv. (1) B = µ 0NI, l where µ 0 is the magnetic constant (= 4π 10 7 T m/a), N is the number of turns of wire, I is the current, and l is the length of the solenoid. Procedure This experiment will be carried out between two solenoids instead of inside a long solenoid, so this magnetic field expression is approximate. It does, however, give the correct order of magnitude, and the magnetic field is proportional to current. Now, since y is proportional to B, and B is proportional to I, and (by Ohm s Law) I is proportional to the voltage V across the solenoids, y is therefore proportional to V : y = (constant)v. The electrical connections to the CRT are shown in Figure 5. Note: Connect all wires as shown, except the single brown wire that connects directly to the high voltage power supply; leave this wire unplugged until the power supply has warmed and the power supply has been switched from STANDBY to DC ON 1. The electrical connections are the same as those in Figures 4 and 5 from Electric Deflection of Electrons with the exception that the deflecting power supply is not used and both sets of deflecting plates are grounded. 1 This subtlety has nothing to do with the concepts involved in the experiment but is due to the equipment. 3

Caution: Use of the 400-V power supply comes with a risk of electric shock. To minimize this risk use the two following precautions: (a) switch the power supply to Standby before you interact with the wires at the front of the power supply, and (b) when circumstances prevent you from following precaution (a), only use one hand to interact with the wires at the front on the power supply (keep your other hand in your pocket!). Precaution (b) is intended to prevent any current from passing through your heart, should it pass through your body at all. Don t worry, just respect the equipment, and mind what you re doing. You will recall from the experiment in electric deflection that the electron beam didn t hit the center of the screen when no deflecting potential was applied. This is a magnetic deflection due to Earth s magnetic field. If the axis of the CRT is along Earth s magnetic field this deflection is zero (F = evb sin θ [= 0 if θ = 0]). Find this orientation by tilting and rotating the tube; then rotate the axis of the tube by 90 to get maximum deflection. Measure the deflection, and use equation (1) to compute Earth s magnetic field. Here L is the distance from the second anode to the screen 14.5 cm for the tube type 3 BP1. Next place the solenoids on opposite sides of the CRT as shown in Figures 4 and 5. Record deflection of the electron beam for several different solenoid potentials. Remember that current is proportional to potential in most common metal conductors. Produce deflections in both directions. Plot deflection versus potential, and comment on your experimentally determined relationship between current and deflection. When you re finished, disconnect the single brown wire from the power supply first, before turning off the power.! Figure 4 Note: In the production of these laboratory setups, Heath Company produced some solenoids that are wound in opposite directions to others; their colors are slightly different. If possible, use two coils of the same color; otherwise, if two unlike solenoids are used, 4

Figure 5: CAUTION: If your high voltage power supply is Model No. IP-32 (the older grey model), be sure to use the alternate connections. 5

you should reverse electrical connection to one. 6 Last Modified: November 2, 2014