Digital Signal Processing

Similar documents
Digital Signal Processing, Fall 2006

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

Frequency Response & Digital Filters

Problem Value Score Earned No/Wrong Rec -3 Total

EC1305 SIGNALS & SYSTEMS

15/03/1439. Lectures on Signals & systems Engineering

Lectures 9 IIR Systems: First Order System

2D DSP Basics: Systems Stability, 2D Sampling

PURE MATHEMATICS A-LEVEL PAPER 1

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform (DFT)

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

DFT: Discrete Fourier Transform

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse

M2.The Z-Transform and its Properties

1985 AP Calculus BC: Section I

Chapter Taylor Theorem Revisited

UNIT 2: MATHEMATICAL ENVIRONMENT

Chapter 4 - The Fourier Series

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

VI. FIR digital filters

10. The Discrete-Time Fourier Transform (DTFT)

Chapter 10 z Transform

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime

Chapter 7 z-transform

ELEC9721: Digital Signal Processing Theory and Applications

from definition we note that for sequences which are zero for n < 0, X[z] involves only negative powers of z.

Generalizing the DTFT. The z Transform. Complex Exponential Excitation. The Transfer Function. Systems Described by Difference Equations

7. Differentiation of Trigonometric Function

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

Solutions. Number of Problems: 4. None. Use only the prepared sheets for your solutions. Additional paper is available from the supervisors.

The Z-Transform. Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer, and Buck, Prentice Hall Inc.

Analog and Digital Signals. Introduction to Digital Signal Processing. Discrete-time Sinusoids. Analog and Digital Signals

DIGITAL SIGNAL PROCESSING LECTURE 3

Response of LTI Systems to Complex Exponentials

ADVANCED DIGITAL SIGNAL PROCESSING

ECE 6560 Chapter 2: The Resampling Process

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

Chapter 7: The z-transform. Chih-Wei Liu

Definition of z-transform.

Chapter 3 Fourier Series Representation of Periodic Signals

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004.

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities.

(looks like a time sequence) i function of ˆ ω (looks like a transform) 2. Interpretations of X ( e ) DFT View OLA implementation

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Fast recursive filters for simulating nonlinear dynamic systems

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

DIGITAL SIGNAL PROCESSING BEG 433 EC

If we integrate the given modulating signal, m(t), we arrive at the following FM signal:

Law of large numbers

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

The Application of Eigenvectors for the Construction of Minimum-Energy Wavelet Frames Based on FMRA

Discrete Fourier Series and Transforms

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Calculus & analytic geometry

Ch3 Discrete Time Fourier Transform

NET/JRF, GATE, IIT JAM, JEST, TIFR

Chapter 9 Computation of the Discrete. Fourier Transform

CIVE322 BASIC HYDROLOGY Hydrologic Science and Engineering Civil and Environmental Engineering Department Fort Collins, CO (970)

ASSERTION AND REASON

DIOPHANTINE APPROXIMATION WITH FOUR SQUARES AND ONE K-TH POWER OF PRIMES

Wavelet Transform Theory. Prof. Mark Fowler Department of Electrical Engineering State University of New York at Binghamton

Fractional Sampling using the Asynchronous Shah with application to LINEAR PHASE FIR FILTER DESIGN

EEO 401 Digital Signal Processing Prof. Mark Fowler

ELEG 4603/5173L Digital Signal Processing Ch. 1 Discrete-Time Signals and Systems

EE Midterm Test 1 - Solutions

Linear time invariant systems

Analysis of a Finite Quantum Well

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

A Simple Proof that e is Irrational

READING ASSIGNMENTS. Signal Processing First LECTURE OBJECTIVES TIME & FREQUENCY. This Lecture: Lecture 13 Digital Filtering of Analog Signals

Partition Functions and Ideal Gases

Digital Signal Processing

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform

Lecture 2 Linear and Time Invariant Systems

Discrete-Time Signals and Systems. Discrete-Time Signals and Systems. Signal Symmetry. Elementary Discrete-Time Signals.

+ x. x 2x. 12. dx. 24. dx + 1)

Chp6. pn Junction Diode: I-V Characteristics I

Scattering Parameters. Scattering Parameters

ELEG3503 Introduction to Digital Signal Processing

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN

Topic 5:Discrete-Time Fourier Transform (DTFT)

ENGR 7181 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

EE123 Digital Signal Processing

ω (argument or phase)

ON THE RELATIONSHIP BETWEEN THE SPHERICAL WAVE EXPANSION AND THE PLANE WAVE EXPANSION FOR ANTENNA DIAGNOSTICS

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications

Transcription:

Digital Sigal Procssig Brli C 4 Rfrcs:.. V. Oppi ad R. W. Scafr, Discrt-ti Sigal Procssig, 999.. uag t. al., Spo Laguag Procssig, Captrs 5, 6. J. R. Dllr t. al., Discrt-Ti Procssig of Spc Sigals, Captrs 4-6 4. J. W. Pico, Sigal odlig tciqus i spc rcogitio, procdigs of t IEEE, Sptbr 99, pp. 5-47

Digital Sigal Procssig Digital Sigal Discrt-ti sigal wit discrt aplitud [] Digital Sigal Procssig Maipulat digital sigals i a digital coputr 4 SP- Brli C

Two Mai pproacs to Digital Sigal Procssig Filtrig Sigal i [] Filtr plify or attuat so frqucy copots of [ ] Sigal out y [ ] Paratr Etractio Sigal i [] Paratr Etractio.g.:. Spctru Estiatio. Paratrs for Rcogitio Paratr out c c c c c c c c c L L L 4 SP- Brli C

[ ] ( φ ) Siusoid Sigals : aplitud ( 振幅 ) : agular frqucy ( 角頻率 ), : pas ( 相角 ) φ f : oralidfrqucy f f T Priod, rprstd by ubr of sapls [] [ ] ( ) (,,... ) E.g., spc sigals ca b dcoposd as sus of siusoids [] T 5 sapls 4 SP- Brli C 4

[ ] Siusoid Sigals (cot.) is priodic wit a priod of (sapls) [ ] [ ] ( ) ( φ ) ( ) φ (,,... ) Eapls (siusoid sigals) [] ( ) is priodic wit priod 8 / 4 [] ( / 8) is priodic wit priod 6 [] ( ) is ot priodic 4 SP- Brli C 5

4 SP- Brli C 6 Siusoid Sigals (cot.) [ ] ( ) ( ) 8 itgrs positiv ar ad 8 4 4 4 ) ( 4 4 4 / [ ] ( ) ( ) ( ) 6 ubrs positiv ar ad 6 8 8 8 8 8 8 / [ ] ( ) ( ) ( ) ( ) ( ) t ist! dos' itgrs positiv ar ad Q

Siusoid Sigals (cot.) Copl Epotial Sigal Us Eulr s rlatio to prss copl ubrs y φ ( φ si φ ) y y y y ( is a ral ubr ) Iagiary part I φ y si φ R ral part 4 SP- Brli C 7

Siusoid Sigals (cot.) Siusoid Sigal ral part [] ( φ ) R R { ( φ ) } { φ } 4 SP- Brli C 8

Siusoid Sigals (cot.) Su of two copl potial sigals wit sa frqucy ( φ ) ( φ ) ( ) φ φ φ ( φ ) W oly t ral part is idrd T su of siusoids of t sa frqucy is aotr siusoid of t sa frqucy ( φ ) ( φ ) ( φ ), ad ar ral ubrs 4 SP- Brli C 9

4 SP- Brli C Siusoid Sigals (cot.) Trigootric Idtitis si si ta φ φ φ φ φ ( ) ( ) ( ) ( ) si si si si φ φ φ φ φ φ φ φ φ φ

So Digital Sigals 4 SP- Brli C

4 SP- Brli C So Digital Sigals y sigal squc ca b rprstd as a su of sift ad scald uit ipuls squcs (sigals) [ ] [] [] [ ] δ scal/wigtd Ti-siftd uit ipuls squc [] [] [ ] [] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] () [ ] ( ) [ ] ( ) [] () [ ] ( ) [ ] () [ ] δ δ δ δ δ δ δ δ δ δ δ δ δ δ,,...,,,,...,

Digital Systs digital syst T is a syst tat, giv a iput sigal [], grats a output sigal y[] [ ] T { [ ] } y [] { } T y[ ] 4 SP- Brli C

Liar Proprtis of Digital Systs Liar cobiatio of iputs aps to liar cobiatio of outputs { a [ ] b [ ] } at { [ ] } bt { [ ] } T Ti-ivariat (Ti-sift) ti sift of i t iput by sapls giv a sift i t output by sapls y ± T ±, [ ] { [ ]} ti sift [ ] (if > ) rigt sift [ ] (if > ) lft sift sapls sapls 4 SP- Brli C 4

Proprtis of Digital Systs (cot.) Liar ti-ivariat (LTI) T syst output ca b prssd as a covolutio ( 迴旋積分 ) of t iput [] ad t ipuls rspos [] T syst ca b caractrid by t syst s ipuls rspos [], wic also is a sigal squc If t iput [] is ipuls δ [], t output is [] δ [ ] [ ] Digital Syst 4 SP- Brli C 5

Proprtis of Digital Systs (cot.) Liar ti-ivariat (LTI) Eplaatio: Ipuls rspos T δ [ ] [ ] Ti ivariat δ δ Digital Syst [ ] [ ] δ [ ] T [] [ ] T [ ] [ ] { } { [] } T [] δ [ ] scal [] T { δ [ ]} [][ ] [] [] Ti-siftd uit ipuls squc liar Ti-ivariat covolutio 4 SP- Brli C 6

Proprtis of Digital Systs (cot.) Liar ti-ivariat (LTI) Covolutio Eapl δ[] [ ] δ [ ] δ LgtL [ ] δ LTI [ ]? LTI [] [ ] [ ] [ ] LgtM - LgtLM- 9-6 6-4 4 - Su up y[] - 4-4 SP- Brli C 7

Proprtis of Digital Systs (cot.) Liar ti-ivariat (LTI) Covolutio: Graliatio Rflct [] about t origi ( [-]) Slid([-] [-] or [-(-)] ), ultiply it wit [] Su up [ ] y [] [][ ] [ ] [ ( )] [ ] Rflct Multiply [ ] slid Su up 4 SP- Brli C 8

[ ] - y [ ] [ ] [ ] Rflct [ ] y[ ], - [ ] - - [ ] [ ] [ ] [ 4] Covolutio - - y - y - - y 4 4 - - y [ ], [ ], [ ], [ ], 4 [][ ] Su up - y[ ] 4-4 SP- Brli C 9

Proprtis of Digital Systs (cot.) Liar ti-ivariat (LTI) Coutatio Covolutio is coutativ ad distributiv [] [ ] [ ] [ ] [ ]* [ ]* [ ] [] * [] * [] Distributio [ ] [ ] [ ] [ ] [ ]* ( [ ] [ ]) [] * [] [] * [] ipuls rspos as fiit duratio» Fiit-Ipuls Rspos (FIR) ipuls rspos as ifiit duratio» Ifiit-Ipuls Rspos (IIR) y [ ] [ ]* [ ] [] * [] [][ ] [][ ] 4 SP- Brli C

4 SP- Brli C Proprtis of Digital Systs (cot.) Prov covolutio is coutativ [] [ ] [ ] [ ] [ ] [ ] [ ] ( ) [] [] y * lt *

4 SP- Brli C Proprtis of Digital Systs (cot.) Liar ti-varyig Syst E.g., is a aplitud odulator [] [ ] y [] [ ] [] [ ] [] [] [ ] [ ] [ ] ( )? But suppos y y y y

Proprtis of Digital Systs (cot.) Boudd Iput ad Boudd Output (BIBO): stabl y [ ] B < [] B < LTI syst is BIBO if oly if [] is absolutly suabl y [ ] 4 SP- Brli C

Proprtis of Digital Systs (cot.) Causality syst is casual if for vry coic of, t output squc valu at idig dpds o oly t iput squc valu for y [ ] K M α y [ ] [ ] β [ ] β y[ ] - β α - - β α - - β M α - y ocausal FIR ca b ad causal by addig sufficit log dlay 4 SP- Brli C 4

Discrt-Ti Fourir Trasfor (DTFT) Frqucy Rspos ( ) Dfid as t discrt-ti Fourir Trasfor of ( ) is cotiuous ad is priodic wit priod [ ] proportioal to two tis of t saplig frqucy ( ) is a copl fuctio of ( ) ( ) ( ) r i ( ) ( ) agitud pas 4 SP- Brli C 5

4 SP- Brli C 6 Discrt-Ti Fourir Trasfor (cot.) Rprstatio of Squcs by Fourir Trasfor sufficit coditio for t istc of Fourir trasfor [] < [ ] ( ) ( ) [ ] d δ,, si ) ( ) ( ) ( ( ) [] [] ( ) [ ] [ ] [ ] [ ] [ ] d d d δ Fourir trasfor is ivrtibl: ) ( ( ) [] [] ( ) d absolutly suabl DTFT Ivrs DTFT

4 SP- Brli C 7 Discrt-Ti Fourir Trasfor (cot.) Covolutio Proprty ( ) [] [] [][ ] ( ) [ ] [ ] [] [ ] ( ) ( ) [] ( ) ( ) Y y ] [ ' ] [ ] [ ' ' ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Y Y Y ' ' '

4 SP- Brli C 8 Discrt-Ti Fourir Trasfor (cot.) Parsval s Tor Dfi t autocorrlatio of sigal [] ( ) d powr spctru [ ] [] ( ) ] [ ] [ ] [ ] [ ] [ ] [ * * l l R l ( ) ( ) ( ) ( ) * S [] ( ) ( ) d d S R [ ] [ ] [ ] [ ] ( ) d R * St T total rgy of a sigal ca b giv i itr t ti or frqucy doai. ( l) l l y y * cougat copl : *

Discrt-Ti Fourir Trasfor (DTFT) LTI syst wit ipuls rspos Wat is t output for y [ ] si ( φ ) ( φ ) [] [] [] ( φ ) [] * [] y ( ( ) φ ) [] ( φ ) [] ( φ ) ( ) ( φ ) ( ) ( ) [ ] y [ ] [ ] ( φ ) Syst s frqucy rspos ( ) > aplify ( ) < attuat ( φ ) ( ) ( ) [ ] ( ) ( φ ) ( ) ( ) si ( φ ) ( ) [] ( ) ( φ ) ( ) y [ ] y 4 SP- Brli C 9

Discrt-Ti Fourir Trasfor (cot.) 4 SP- Brli C

Z-Trasfor -trasfor is a graliatio of (Discrt-Ti) Fourir trasfor [ ] ( ) [ ] -trasfor of is dfid as [ ] ( ) [ ] ( ) r Wr, a copl-variabl For Fourir trasfor I copl pla ( ) ( ) R -trasfor valuatd o t uit circl ( ) uit circl 4 SP- Brli C

Z-Trasfor (cot.) Fourir trasfor vs. -trasfor Fourir trasfor usd to plot t frqucy rspos of a filtr -trasfor usd to aaly or gral filtr caractristics,.g. stability I copl pla R ROC (Rgio of Covrg) Is t st of for wic -trasfor ists (covrgs) R R [] < absolutly suabl I gral, ROC is a rig-sapd rgio ad t Fourir trasfor ists if ROC icluds t uit circl ( ) 4 SP- Brli C

Z-Trasfor (cot.) LTI syst is dfid to b causal, if its ipuls rspos is a causal sigal, i.. [] for < Siilarly, ati-causal ca b dfid as y [ ] [ ]* [ ] [] * [] [][ ] Rigt-sidd squc [][ ] [] for > Lft-sidd squc LTI syst is dfid to b stabl, if for vry boudd iput it producs a boudd output cssary coditio: [ ] < Tat is Fourir trasfor ists, ad trfor -trasfor iclud t uit circl i its rgio of covrg 4 SP- Brli C

Rigt-Sidd Squc t uit cycl E.g., t potial sigal. Z-Trasfor (cot.) [] a u[], wr u[] a ( ) ( ) a a ROC is > I a R a If a < for for < Fourir tr asfor of [] ists if a < av a pol at a (Pol: -trasfor gos to ifiity) 4 SP- Brli C 4

Z-Trasfor (cot.) Lft-Sidd Squc E.g. [] a u[ ] (,-,-,...,- ). ( ) a u[ ] t uit cycl I a If a < a ROC is < a R ( ) a w a a a <, t a a [] dos' t ist, bcaus [] potially as a Fourir trasfor of will go 4 SP- Brli C 5

4 SP- Brli C 6 Z-Trasfor (cot.) Two-Sidd Squc E.g. [] [] [ ]. u u [] [ ],, < > u u R I t uit cycl [ ] uit circl t t iclud dos' bcaus t ist, dos' Fourir tr asfor of ROC ad is > < ROC ( )

Fiit-lgt Squc E.g.. 4 4 [] a, Z-Trasfor (cot.), otrs ( ) ( ) ( a ) a a a - a a a a... a ROC 4 is tir - pla cpt t uit cycl I ( ) a,,.., 4 If 8 R 7 pols at ro pol ad ro at is caclld a 4 SP- Brli C 7

Z-Trasfor (cot.) Proprtis of -trasfor []. If is rigt-sidd squc, i.. [ ], ad if ROC is t trior of so circl, t all fiit for wic > r will b i ROC If,ROC will iclud causal squc is rigt-sidd wit ROC is t trior of circl icludig []. If is lft-sidd squc, i.. [],, t ROC is t itrior of so circl, < If,ROC will iclud []. If is two-sidd squc, t ROC is a rig 4. T ROC ca t cotai ay pols 4 SP- Brli C 8

Suary of t Fourir ad -trasfors 4 SP- Brli C 9

LTI Systs i t Frqucy Doai Eapl : copl potial squc Syst ipuls rspos y [ ] [] [] [] [] [ ] - [] ( ) - Trfor, a copl potial iput to a LTI syst rsults i t sa copl potial at t output, but odifid by ( ) T copl potial is a igfuctio of a LTI syst, ad is t associatd igvalu T ( ) scalar { [ ] } ( ) [ ] ( ) ( ) : t t It is oft syst Fourir tr syst y [ ] [ ]* [ ] [] * [] [][ ] ipuls rfrrd frqucy asfor to rspos. as of t rspos. [][ ] 4 SP- Brli C 4

4 SP- Brli C 4 [] ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] ) ( ) ( ) ( ) ( * y φ φ φ φ φ φ φ LTI Systs i t Frqucy Doai (cot.) Eapl : siusoidal squc Syst ipuls rspos [ ] ( ) φ w [] ( ) φ φ φ [ ] ( ) θ θ θ θ θ θ θ θ θ i i si si ( ) ( ) ( ) ( ) ( ) * * ( ) ( ) ( ) si si si * si * y y agitud rspos pas rspos

LTI Systs i t Frqucy Doai (cot.) Eapl : su of siusoidal squcs y K [] ( φ ) K [] ( ) [ ( )] φ agitud rspos siilar prssio is obtaid for a iput istig of a su of copl potials pas rspos 4 SP- Brli C 4

LTI Systs i t Frqucy Doai (cot.) Eapl 4: Covolutio Tor [] δ [ P ] [] a u[], a < DTFT DTFT [ ] [ ] ( ) ( ) ( ) δ P a ( ) Y P ( ) ( ) ( ) a P a δ P P as a oro valu w P 4 SP- Brli C 4

4 SP- Brli C 44 LTI Systs i t Frqucy Doai (cot.) Eapl 5: Widowig Tor [][] ( ) ( ) W w [] [ ] P δ [] otrwis,,...,,.46.54 w aig widow ( ) ( ) ( ) ( ) ( ) ( ) P W P P W P P W P P P W W Y δ δ δ as a oro valu w P

Diffrc Equatio Raliatio for a Digital Filtr T rlatio btw t output ad iput of a digital filtr ca b prssd by M [ ] β y[ ] y α y β Y [ ] [ ] [ ] liarity ad dlay proprtis M ( ) α Y ( ) β ( ) ratioal trasfr fuctio ( ) Y M ( ) ( ) α dlay proprty β [ ] ( ) [ ] ( ) - - - β M Causal: Rigtsidd, t ROC outsid t outost pol Stabl: T ROC icluds t uit circl Causal ad Stabl: all pols ust fall isid t uit circl (ot icludig ros) β β α α α - - - 4 SP- Brli C 45

Diffrc Equatio Raliatio for a Digital Filtr (cot.) 4 SP- Brli C 46

Magitud-Pas Rlatiosip Miiu pas syst: T -trasfor of a syst ipuls rspos squc ( a ratioal trasfr fuctio) as all ros as wll as pols isid t uit cycl Pols ad ros calld iiu pas copots Maiu pas: all ros (or pols) outsid t uit cycl ll-pass syst: Cosist a cascad of factor of t for -a * a ± Caractrid by a frqucy rspos wit uit (or flat) agitud for all frqucis Pols ad ros occur at cougat rciprocal locatios -a * a 4 SP- Brli C 47

Magitud-Pas Rlatiosip (cot.) y digital filtr ca b rprstd by t cascad of a iiu-pas syst ad a all-pass syst ( ) ( ) ( ) ( ) i Suppos tat as oly o ro ( a < ) a* outsid t uit circl. ca b prssd as : ( ) * ( ) ( )( a ) ( ) ()( ) ( ( ( ) * a a a ) wr : ( )( a ) * ( a ) is a ( a ) is also a all - pass iiu filtr. is a ap iiu pas filtr. pas filtr) 4 SP- Brli C 48

FIR Filtrs FIR (Fiit Ipuls Rspos) T ipuls rspos of a FIR filtr as fiit duratio av o doiator i t ratioal fuctio o fdbac i t diffrc quatio y [] M β [ r ] [] ( ) r β, Y r, M ( ) ( ) otrwis M β [ ] Ca b ipltd wit sipl a trai of dlay, ultipl, ad add opratios - - - β β β M ( ) y[ ] 4 SP- Brli C 49

First-Ordr FIR Filtrs spcial cas of FIR filtrs y[] [ ] α [ ] ( ) θ ( ) α ( si ) ( α ) ( α si ) α si ( ) arcta α α α < α ( ) α : pr-pasis filtr log ( ) 4 SP- Brli C 5

Discrt Fourir Trasfor (DFT) T Fourir trasfor of a discrt-ti squc is a cotiuous fuctio of frqucy W d to sapl t Fourir trasfor fily oug to b abl to rcovr t squc For a squc of fiit lgt, saplig yilds t w trasfor rfrrd to as discrt Fourir trasfor (DFT) ( ) [] [] ( ),, DFT, alysis Ivrs DFT, Sytsis 4 SP- Brli C 5

4 SP- Brli C 5 Discrt Fourir Trasfor (cot.) [ ] [ ] ( ) ( ) ( )( ) [] [] [ ] [] [] [ ], M M L M L M M L L

4 SP- Brli C 5 Discrt Fourir Trasfor (cot.) Ortogoality of Copl Epotials ( ) otrwis, if, -r r [] [] [] [] ( ) [] ( ) [] [] [] r r r r r [ ] [ ] [] r r

Discrt Fourir Trasfor (DFT) Parsval s tor [] ( ) Ergy dsity 4 SP- Brli C 54

alog Sigal to Digital Sigal alog Sigal Discrt-ti Sigal or Digital Sigal [] ( T ), T :saplig priod a t T Digital Sigal: Discrt-ti sigal wit discrt aplitud F s T saplig rat saplig priod5μs >saplig rat8 4 SP- Brli C 55

Cotiuous-Ti Sigal a () t s alog Sigal to Digital Sigal (cot.) () t δ ( t T ) Cotiuous-Ti to Discrt-Ti Covrsio Saplig switc a s s ( t ) Ipuls Trai To Squc ˆ [ ] ( ( T)) ()() t s t () t δ ( t T ) a a ( T ) δ ( t T ) []( δ t T ) Priodic Ipuls Trai ( t) ca b uiquly spcifid by [ ] Discrt-Ti Sigal a [ ] Digital Sigal a ( t ) Discrt-ti sigal wit discrt aplitud s () t δ ( t T) δ ( t ) δ () t dt, t -T -T T T T 4T 5T 6T 7T 8T 4 SP- Brli C 56

alog Sigal to Digital Sigal (cot.) cotiuous sigal sapld at diffrt priods a () t ( t ) a T a s ( t) ()() t s t () t δ ( t T ) a a ( T ) δ ( t T ) []( δ t T ) 4 SP- Brli C 57

alog Sigal to Digital Sigal (cot.) Spctra a ( Ω) S T ( Ω ) δ ( Ω Ω ) s Ω Ω T s F s (saplig frqucy) s s T ( Ω ) ( Ω ) S ( Ω ) ( Ω ) ( ( Ω Ω )) ig frqucy copots got supriposd o low frqucy copots a a aliasig distortio s T Ω < Ω s / R s ( Ω) a ( Ω) RΩ ( Ω) p ( Ω) s Ω a otrwis Low-pass filtr ( Ω) ca' t b rcovrd fro ( Ω) p Ω Ω < ( Ω Ω ) Q s Ω s > Ω s > Ω Ω T > Ω s T ( Ω Ω ) Q Ω s s < Ω 4 SP- Brli C 58 < Ω

alog Sigal to Digital Sigal (cot.) To avoid aliasig (ovrlappig, fold ovr) T saplig frqucy sould b gratr ta two tis of frqucy of t sigal to b sapld Ω > (yquist) saplig tor To rtruct t origial cotiuous sigal Filtrd wit a low pass filtr wit bad liit Covolvd i ti doai ( t ) sic Ω t s s Ω Ω a s () t ( T ) ( t T ) a a ( T ) sic Ω ( t T ) s 4 SP- Brli C 59