Hess s Method. Teacher Instructions. Overview: Objectives: Materials: Activity Procedure:

Similar documents
Locating the Epicenter

Putting Earth In Its Place

Tracking Ash Plumes. Teacher Instructions. Overview: Objectives: Materials: Answers to Student Worksheet:

Determining Lava Temperatures

Name Class Date. The ocean floor has varied and distinct surfaces much like those found on land.

GPS Mapping. Teacher Instructions. Overview: Objectives: Materials: Answers to Student Worksheets:

Topography and Bathymetry

Recipe for Volcanoes

GEOL- 270: Issues in Oceanography Developed by Jessica Kleiss, Lewis & Clark College

Video Review. Proof was not enough. Despite these 4 major pieces of evidence, geologists of Wegener's time still did not believe his idea.

Warm Up 1: Ocean Floors LT I can explain the concept of Pangea. I can describe how Ocean Ridges form and give examples of them.

Ash Plumes. Teacher Instructions. Overview: Objectives: National Standards: Alaska Grade Level Expectations Addressed:

Sea-Floor Spreading. Use Target Reading Skills. Mid-Ocean Ridges. What Is Sea-Floor Spreading?

Laboratory #1: Plate Tectonics

Oceanic crust forms at ocean ridges and becomes part of the seafloor. Review Vocabulary. basalt: a dark-gray to black fine-grained igneous rock

Benioff Box. Original Source: Dr. Leslie Sautter, Department of Geology, College of Charleston

General Oceanography Geology 105 Expedition 8 Plate Boundaries Beneath the Sea Complete by Thursday at 11:00 PM

At the Edge of the Continent

Geologists are scientists who study Earth. They want to

Name Date Class. How have geologists learned about Earth s inner structure? What are the characteristics of Earth s crust, mantle, and core?

Earth / Environmental Science. Ch. 14 THE OCEAN FLOOR

OS 1 The Oceans Fall 2007

Almost of Earth is covered by water. On a map, the continents appear as huge islands surrounded by a vast global ocean.

The Bottom of the Ocean

Small area of the ocean that is partially surrounded by land. The Ocean Basins. Three Major Oceans. Three Major Oceans. What is a SEA?

Chapter 2 The Way The Earth Works: Plate Tectonics

PLATE TECTONICS Chapter 4 Notes

MARINE GEOLOGY & GEOGRAPHY

TEMPERATURE AND DEEP OCEAN CIRCULATION

Marine Science and Oceanography

Map shows 3 main features of ocean floor

In this activity, students will make a classroom weather report chart and record data for four weeks.

MiSP Plate Tectonics Worksheet #1 L1

Task Booklet 2008 Grade 8

Chapter 5 Notes: Plate Tectonics

Unit 5, Lesson 1: Interpreting Negative Numbers

Aim: What did the earth look like 220 Million Years Ago (220 MYA)? Do Now: What do you know about plate tectonics and continental drift?

Questions for Discussion. Plate Tectonics II: The Ocean Floor and the Seafloor Spreading Hypothesis

Plate Tectonics. Chapter 5

8.9A - describe the historical development of evidence that supports plate tectonic theory

Seas. A sea is a part of an ocean that is nearly surrounded by water. The Mediterranean, Arctic and Black Sea are really part of the Atlantic Ocean.

Chapter 2 Plate Tectonics and the Ocean Floor

BI 101: Marine Biology

Kind of plate boundary (convergent or divergent?)

Organisms in the Ocean

Activity #3 - Bathymetric Mapping

Sea-Floor Spreading, Subduction,& Plate Boundaries. Lecture Continental Fit 2. Similar Rocks, Ages 3. Similar Fossils 4. Widespread Glaciation

Week: 4 5 Dates: 9/2 9/12 Unit: Plate Tectonics

The ACTIVE EARTH!!!!!

Sea-Floor Spreading, Subduction,& Plate Boundaries. Lecture 23. Geol 101 (Kite) Quiz 9, April Geol 101 (Kite) Quiz 9, April 2006

Seafloor Spreading and Paleomagnetism Activity

Dynamic Planet. Student Name. Teacher

Bathymetry Measures the vertical distance from the ocean surface to mountains, valleys, plains, and other sea floor features

General Oceanography Geology 105 Expedition 8 Plate Boundaries Beneath the Sea

Exploring Inside the Earth

Ocean Scavenger Hunt. Materials: pencil study notes timer. Directions:

Module 7: Plate Tectonics and Earth's Structure Topic 2 Content: Major Events in the History of Plate Tectonics Theory Notes

[5] SA1.2 The student demonstrates an understanding of the processes of science by using

Lab # - Ocean Bottom Topography. Background Information:

Wegener published his book On the Origin of Continents and

Volcanic Hot Spots and Continental Drift

Activity Cupcake Geology

Test on Chapters 7-11 Monday, April 28, 2014 No Calculator Required

Chapter Overview. Bathymetry. Measuring Bathymetry. Measuring Bathymetry

sonar seismic wave basalt granite

Science in the News - Plate Tectonics 1. Story

Earthquakes. Lesson 9

PSc 201 Chapter 3 Homework. Critical Thinking Questions

The Theory of Plate Tectonics

Impact Craters Teacher Page Purpose

Section 21.1 pp What is Climate?

GEOSCIENCE 105 THE DYNAMIC EARTH FIRST ONE-HOUR EXAMINATION. Tuesday, October 20, 1998 NAME STUDENT #

Plate Tectonic Theory

8.9A the historical development of evidence that supports plate tectonic theory

I. Earth s Layers a. Crust: Earth s outside layer. Made of mostly rock. i. Continental: er; made of mostly granite, forms the continents and shallow

LAB: PLATE TECTONICS GOAL: Calculate rates of plate movement

The Ocean Floor Earth Science, 13e Chapter 13

Lunar Crater Activity - Teacher Pages

Plate Boundaries & Resulting Landforms

From VOA Learning English, this is SCIENCE IN THE NEWS, in Special English. I m Kelly Jean Kelly.

Students use simple materials to make models of atoms of several elements.

MiSP Plate Tectonics Worksheet #2 L3

Plate Tectonics Investigation

Alfred Wegener gave us Continental Drift. Fifty years later...

Plate Tectonics. Continental Drift Sea Floor Spreading Plate Boundaries

This Rocks! Author: Sara Kobilka Institute for Chemical Education and Nanoscale Science and Engineering Center University of Wisconsin-Madison

Essentials of Oceanography Eleventh Edition

Earth Science Ch. 5.1 Ch. 5 Vocabulary List Lesson 1: Earth s Moving Plates

Sea Floor Spreading Lesson 2

Essential Question: How are the geological features that exist on land similar to the geological features on the ocean floor?

Do Now: Vocabulary: Objectives. Vocabulary: 1/5/2016. Wegener? (Can they move?) the idea that continents have moved over time?

NOS 10 Scientific Explanations

Objectives. Vocabulary

Drifting Continents and Spreading Seas. The Road To Plate Tectonics

Ohio s State Tests PRACTICE TEST GRADE 8 SCIENCE. Student Name

Biology Activity: Science Process; Measurements; Tools; Data Presentation and Analysis Purpose Question Background

Rising Sea Simulation in Buzzards Bay! Via the Augmented Reality Sandbox

Objectives: Describe the structure of the ocean floor. Describe light intensity and temperature characteristics at different ocean depths.

Station 1: measuring & graphing short lengths

Lesson 14: Plate Tectonics II

Transcription:

Teacher Instructions Overview: During the teacher demonstration, students will map the topography (or bathymetry, the submarine equivalent of topography) of a shoebox model of the ocean floor using a method similar to the one Harry Hammond Hess used to map the floor of the Pacific Ocean when he was developing the theory of ocean floor spreading. During the student activity, students will use echo location information to construct a map of the sea floor. Objectives: The student will: understand how to use a ruler to measure the bathymetry of a hidden model; graph data gathered; understand that Harry Hammond Hess used a similar method to map the floor of the Pacific Ocean, where he found mid ocean ridges and deep ocean trenches; construct a map of the sea floor using echo location information; and identify the point on the map that represents an ocean trench. Materials: Shoebox with lid Plastic bag Newspaper Plaster of Paris Knife Ruler Transparency: Graph : Activity Procedure: 3. 4. Cultural Tie ÿöpeÿapeÿa, the Hawaiian bat, is the only terrestrial mammal native to Hawaiÿi. Bats, as well as dolphins and whales, use echo location to navigate and find food. They send out highpitched sounds that bounce off objects, creating an echo that returns to the bat. Bats can detect the shape, size and location of objects with great accuracy. The procedure for the optional teacher demonstration can be found at the end of this lesson. Explain to students that they will create their own maps of the ocean floor, using measurements similar to those Hess gathered. Distribute the :. Read and discuss the Background Information. Share the Cultural Tie found above. Ask students to look at the map on the second page of their worksheets. Explain that the deepest point in the ocean is located near Guam. This depth, known as the Challenger Deep, lies at the southern end of the Mariana Trench. Ask students to hypothesize the distance between the Challenger Deep and Guam, then ask students to follow the directions to complete the worksheets. After students finish their worksheets, ask them to share their conclusions. Ola Ka Honua: Volcanoes Alive 99 2001, 2007 UAF Geophysical Institute

Answer Key Sonar Data Table: Distance from Guam (km) Total time for echo to return to ship Time it took for sound to reach bottom Speed of sound in ocean water Total time in seconds (Total time 2) 1500 m/s Distance to bottom in meters (Depth) (Total time 2) x 1500 m/s = Distance 0 0 0 1500 0 16 34.67 1500 1005 32 34.67 1500 1005 48 5.22 61 1500 3915 64 4.00 00 1500 3000 80 4.00 00 1500 3000 96 4.88 44 1500 3660 112 4.27 14 1500 3210 128 4.13 07 1500 3105 144 9.47 4.74 1500 7110 160 14.70 7.35 1500 11025 176 100 6.00 1500 9000 192 9.33 4.67 1500 7005 208 6.80 3.40 1500 5100 224 5.60 80 1500 4200 240 5.07 54 1500 3810 Analysis of Data: 1 & 2 0 1000 16 32 Distance from Guam (kilometers) 48 64 80 96 112 128 144 160 176 192 208 224 240 Conclusion: If the sonar data collected is accurate, then the distance from Guam to the Challenger Deep is 160 km. Answers to Further Questions: c) Harry Hammond Hess 2000 3000 4000 Answers to Critical Thinking: Answers will vary Answers will vary Depth (meters) 5000 6000 7000 8000 9000 10000 Challenger Deep 11000 12000 13000 Ola Ka Honua: Volcanoes Alive 100 2001, 2007 UAF Geophysical Institute

Optional Teacher Demonstration Teacher Demonstration Procedure: 3. 5. 6. 7. Before World War II, not much was known about the ocean floor. The development of sonar during the war made more detailed maps of the ocean floor possible. Harry Hammond Hess, a geologist from Princeton University, was the captain of the assault transport vessel Cape Johnson. While stationed in the Pacific Ocean during World War II, Hess used the echo location (sonar) capabilities of his ship to collect data about the ocean floor. He later used this data to construct a map of the ocean floor that led him to develop the hypothesis of sea floor spreading. plastic bag plaster of paris layer newspaper layer In preparation for this activity, make a shoebox model of an ocean trench. Wad up newspaper and place it in the bottom of a shoebox. Over the newspaper, line the box with a plastic bag. Mix plaster of paris and pour it into the plastic-lined shoebox. The plaster of paris should mold over the newspaper, creating a model landscape. Make sure the model includes a noticeable trench. Allow the plaster to dry and the model to harden. While your model is drying, push a knife through the lid of the shoebox, making slits at 2 cm increments wide enough for a ruler to fit through. When the model is dry, place the lid on the shoebox. Do not allow students to look in the box. Explain that students will map the bathymetry of a model of the sea floor in the shoebox. They will create a map similar to the one Hess created when he mapped the topography of the ocean floor. During this activity, the lid of the box will represent the sea surface and the model inside will represent the sea floor. Hess used instruments that measured the distance to the ocean floor from sea level (his boat). These instruments send sound waves through water to take their measurements. Many people use instruments on boats to measure the depth of the water or to find fish. Tell students they will use rulers to take their measurements. 4. Explain that students will measure the distance from the sea surface to the sea floor from each hole in the lid of the shoe box. Demonstrate by inserting a ruler into the first hole. Read the measurement (in centimeters) on the ruler at the level of the lid. Explain that this measurement represents how far below sea level the ocean floor is located. In this activity, 1 cm equals 1,000 m. Ask a student to make a measurement every 2 cm (2,000 m) through the lid. Ask another student to record the data as it is collected. Place Transparency #1: Hess Method Graph on the overhead projector. Ask a student to use a marker to plot the distances measured from the shoe box model onto the transparency, with the depth on the y axis and the horizontal measurement on the x axis. When plotting measurements, be sure to count down from the top the specified number of centimeters (1,000s of meters) that were measured for each depth, and make a dot for each horizontal location. The top of the graph indicates sea level, and the graph is plotted to demonstrate how far below sea level the ocean floor is located. Ask the student to connect the dots on the graph. Discuss student results and unveil the model ocean floor by removing the lid from the box. The model should have the same shape as the dark profile on the transparency. Ask students if they can identify the shallowest point on the graph. If this were a map of the ocean floor, that point might indicate a mid ocean ridge. Ask students to identify the deepest point on the graph. If this were a map of the plastic bag ocean floor, that point might indicate an ocean trench. plaster of paris layer newspaper layer Ola Ka Honua: Volcanoes Alive 101 2001, 2007 UAF Geophysical Institute

Testable Question: How far from Guam is the Challenger Deep (the deepest point in the ocean)? Background Information: Before World War II, not much was known about the ocean floor. With the development of sonar during the war more detailed maps of the ocean floor could be made. Harry Hammond Hess, a geologist from Princeton University, was the captain of the assault transport vessel Cape Johnson. While stationed in the Pacific Ocean, Hess used the echo location (sonar) capabilities of his ship to collect data about the ocean floor. He later used this information to construct a map of the ocean floor that led him to develop the hypothesis of sea floor spreading. Echo location works by sending out a signal, called a ping, from a ship. That sound bounces off the ocean floor and is reflected back to the ship. By timing how long it takes to hear the echo of the sound, scientists can determine how far it is to the bottom. To determine the distance to the ocean floor, the time of the echo and the speed of the sound in ocean water (1500 meters per second) must be determined. For example, if a ship sends out a ping that is reflected back in 34 seconds, the ping took.67 seconds to go down and.67 to reflect back (34 sec 2 =.67 sec). To find the distance from the ship to the ocean floor, multiply.67 by the speed of sound in ocean water (1500 m/s). In this example, the ocean floor is 1005 meters from the surface (.67 sec x 1500 m/s = 1005 m). Repeating this procedure as the ship moves forward will reveal data that can be used to map the ocean floor. Distance = (Total Time/2) x speed of sound in water Distance = (34 sec/2) x 1500 m/s 1005 m =.67 sec x 1500 m/s Distance = 1005 meters from surface.67 seconds.67 seconds Ola Ka Honua: Volcanoes Alive 102 2001, 2007 UAF Geophysical Institute

Hypothesis: If the sonar data collected is accurate, then the distance from Guam to the Challenger Deep is km. Data: Below are sonar data recordings from the sea floor near Guam, where the Challenger Deep is located. The sonar data will help you create a map of the bottom of the ocean for this area. Start by completing the Sonar Data Table. The first calculations are done. Be sure to round decimals to the nearest hundredth. Mariana Islands Challenger Deep Hawaiian Islands Sonar Data Table Distance from Guam (km) Total time for echo to return to ship Time it took for sound to reach bottom Speed of sound in ocean water Total time in seconds (Total time 2) 1500 m/s Distance to bottom in meters (Depth) (Total time 2) x 1500 m/s = Distance 0 0 0 1500 0 16 34.67 1500 1005 32 34 1500 48 5.22 1500 64 4.00 1500 80 4.00 1500 96 4.88 1500 112 4.27 1500 128 4.13 1500 144 9.47 1500 160 14.70 1500 176 100 1500 192 9.33 1500 208 6.80 1500 224 5.60 1500 240 5.07 1500 Ola Ka Honua: Volcanoes Alive 103 2001, 2007 UAF Geophysical Institute

Analysis of Data: Plot the data from the Sonar Data Table on the graph below. Distance from Guam (kilometers) 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 1000 2000 3000 4000 Depth (meters) 5000 6000 7000 8000 9000 10000 11000 12000 13000 On the graph, write Challenger Deep on the point that represents the deepest part of the ocean trench. Conclusion: If the sonar data collected is accurate, then the distance from Guam to the Challenger Deep is km. Was your hypothesis proved or disproved? Explain your answer. Ola Ka Honua: Volcanoes Alive 104 2001, 2007 UAF Geophysical Institute

Further Questions: Who developed the theory of ocean floor spreading? a) J. Tuzo Wilson b) Pierre Laplace c) Harry Hammond Hess d) Florence Bascon Critical Thinking: What is the relationship between the time it takes for a sonar ping to return to the ship and the depth of the ocean? How is the ruler and shoebox model of ocean floor mapping similar to and different from Hess s method of mapping the ocean floor? Complete the diagram below. Shoebox Model Ola Ka Honua: Volcanoes Alive 105 2001, 2007 UAF Geophysical Institute