Solution by Nicuşor Zlota, Traian Vuia Technical College, Focşani, Romania

Similar documents
Probleme propuse spre rezolvare. Solution by Mathematical Reflections and Mathematical Excalibu. Nicusor Zlota

ELEMENTARY PROBLEMS AND SOLUTIONS

PUTNAM TRAINING INEQUALITIES

ELEMENTARY PROBLEMS AND SOLUTIONS

József Wildt International Mathematical Competition

MATH 112: HOMEWORK 6 SOLUTIONS. Problem 1: Rudin, Chapter 3, Problem s k < s k < 2 + s k+1

ADVANCED PROBLEMS AND SOLUTIONS

Coffee Hour Problems of the Week (solutions)

University of Manitoba, Mathletics 2009

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms.

*********************************************************

INEQUALITIES BJORN POONEN

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

The Problem Corner. Edited by Pat Costello

Test de Departajare pentru MofM 2014 (Bucureşti) Enunţuri & Soluţii

ECE534, Spring 2018: Solutions for Problem Set #2

*********************************************************

VECTOR SEMINORMS, SPACES WITH VECTOR NORM, AND REGULAR OPERATORS

ADVANCED PROBLEMS AND SOLUTIONS PROBLEMS PROPOSED IN THIS ISSUE

Assignment 5: Solutions

Appendix to Quicksort Asymptotics

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

*********************************************************

Solutions for May. 3 x + 7 = 4 x x +

F on AB and G on CD satisfy AF F B = DG

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION

Solutions to Math 347 Practice Problems for the final

SEQUENCE AND SERIES NCERT

IMAR Problema 1. Fie P un punct situat în interiorul unui triunghi ABC. Dreapta AP intersectează

Rational Bounds for the Logarithm Function with Applications

Teorema Reziduurilor şi Bucuria Integralelor Reale Prezentare de Alexandru Negrescu

Q.11 If S be the sum, P the product & R the sum of the reciprocals of a GP, find the value of

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

*********************************************************

Math 143 Review for Quiz 14 page 1

Inequalities. Putnam Notes, Fall 2006 University of Utah

On Divisibility concerning Binomial Coefficients

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6

ADVANCED PROBLEMS AND SOLUTIONS. Edited by Florian Luca

On forward improvement iteration for stopping problems

DANIELL AND RIEMANN INTEGRABILITY

About Surányi s Inequality

SEVERAL GEOMETRIC INEQUALITIES OF ERDÖS - MORDELL TYPE IN THE CONVEX POLYGON

Objective Mathematics

Topics. Homework Problems. MATH 301 Introduction to Analysis Chapter Four Sequences. 1. Definition of convergence of sequences.

ADVANCED PROBLEMS AND SOLUTIONS

The Asymptotic Expansions of Certain Sums Involving Inverse of Binomial Coefficient 1

Lecture 23 Rearrangement Inequality

A Bernstein-Stancu type operator which preserves e 2

Procedeu de demonstrare a unor inegalităţi bazat pe inegalitatea lui Schur

MA131 - Analysis 1. Workbook 9 Series III

ON THE LAGRANGE COMPLEX INTERPOLATION

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

SYMMETRIC POSITIVE SEMI-DEFINITE SOLUTIONS OF AX = B AND XC = D

LECTURE SERIES WITH NONNEGATIVE TERMS (II). SERIES WITH ARBITRARY TERMS

3sin A 1 2sin B. 3π x is a solution. 1. If A and B are acute positive angles satisfying the equation 3sin A 2sin B 1 and 3sin 2A 2sin 2B 0, then A 2B

Some remarks on the paper Some elementary inequalities of G. Bennett

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

On a class of convergent sequences defined by integrals 1

1+x 1 + α+x. x = 2(α x2 ) 1+x

A REFINEMENT OF JENSEN S INEQUALITY WITH APPLICATIONS. S. S. Dragomir 1. INTRODUCTION

Equations and Inequalities Involving v p (n!)

Exponential Functions and Taylor Series

Sequences and Limits

Seunghee Ye Ma 8: Week 5 Oct 28

De Moivre s Theorem - ALL

A New Method About Using Polynomial Roots and Arithmetic-Geometric Mean Inequality to Solve Olympiad Problems

Poincaré Problem for Nonlinear Elliptic Equations of Second Order in Unbounded Domains

Complex Analysis Spring 2001 Homework I Solution

PERIODS OF FIBONACCI SEQUENCES MODULO m. 1. Preliminaries Definition 1. A generalized Fibonacci sequence is an infinite complex sequence (g n ) n Z

Math 61CM - Solutions to homework 1

LOWER BOUNDS FOR THE BLOW-UP TIME OF NONLINEAR PARABOLIC PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 3 Solutions

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

ANSWERS SOLUTIONS iiii i. and 1. Thus, we have. i i i. i, A.

SINGLE CORRECT ANSWER TYPE QUESTIONS: TRIGONOMETRY 2 2

Sequence A sequence is a function whose domain of definition is the set of natural numbers.

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

Non-Archimedian Fields. Topological Properties of Z p, Q p (p-adics Numbers)

Objective Mathematics

Numere prime. O selecţie de probleme pentru gimnaziu

A METHOD TO SOLVE THE DIOPHANTINE EQUATION ax 2 by 2 c 0

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs

Exponential Functions and Taylor Series

Infinite Sequences and Series

Time series models 2007

Solutions to Problem Set 7

II. EXPANSION MAPPINGS WITH FIXED POINTS

ECE534, Spring 2018: Final Exam

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.

ADVANCED PROBLEMS AND SOLUTIONS

Solutions. tan 2 θ(tan 2 θ + 1) = cot6 θ,

VIETA-LIKE PRODUCTS OF NESTED RADICALS

Log1 Contest Round 1 Theta Equations & Inequalities. 4 points each. 5 points each. 7, a c d. 9, find the value of the product abcd.

1 Introduction. 1.1 Notation and Terminology

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile. s: /

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

On Cesáro means for Fox-Wright functions

ANSWERS TO MIDTERM EXAM # 2

Transcription:

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 Probleme rouse sre rezolvare Nicusor Zlota, Focsai 08.Prove that C, j N,where the fiboacci, F F F 0 F F, F 0, F + = + + = = = 0 + j + j 09.Let a,b,c be umbers real ad,, <.Prove that + + + a b c a + b + c + + a + b b + c c + a 0.Let a>0 ad sequece ( x) 0, x x,. Evaluate lim!( x a ) Solutio Mathematical Reflectios 5/04, 6/04 Solutio Mathematical Excalibur 460, School Sciece ad Mathematics Associatio (ssma) Solutio Recreatii Matematice /04 J5 Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia By settig a= x, b= y, c= z,whe iequality is equivalet to : x+ y+ z x+ y+ z x+ y+ z 4a+ + ab+ + ac+ 5+ 5x+ y+ z+ x+ 5y+ z+ x+ y+ 5 z ( 5+ ) x+ y+ z By squarig, we obtai

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 5x+ y+ z+ x+ 5y+ z+ x+ y+ 5z+ 5x+ y+ z x+ 5 y+ z ( x+ y+ z)(9+ 4 5),(*) 5x+ y+ z x+ 5 y+ z (+ 5)( x+ y+ z) We show that 5x+ y+ z x+ 5y+ z 5( x+ y) + z 8 xy+ ( 5) yz+ ( 5) zx> 0, x, y, z> 0, is true similarly we get x+ 5y+ z x+ y+ 5z 5( y+ z) + x x+ y+ 5z 5x+ y+ z 5( x+ z) + y,that by gatherig obtai iequality (*) J9. Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Alyig Cauchy-Schwarz-Buiaovsi, we a a a a ( a+ a+.. + a) + + +... + = aa aa aa aa aa aa aa a a aa + aa a 0 4 + 0 + J. Let x,y,z be ositive real umbers such that xyz(x+y+z)=.prove that 54 9 x + y + z + ( x+ y+ z) Proosed by Marius Staea, Zalau, Romaia Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Let

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 x+ y+ z= u xy+ yz+ zx= v xyz= w, the we have xyz( x+ y+ z) = uw = uw =, () This iequality is equivalet to 54 x y z ( x+ y+ z) + + + 9 ( x+ y+ z) ( x y + y z + z x ) + 54( xyz) 9( x+ y+ z) ( xyz) 4 6 6 9 u (9v 6 uw ) 54w 9(9 u )( w ) + 4 6 u (v ) + w Hece, our iequality is equivalet to, where is a icreasig fuctio. J. I triagle ABC sia+ sib+ sic= 5 Proosed by Titu Adreescu, Uiversity of Texas at Dallas, USA Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia I triagle ABC, we have : a< b+ c sia< sib+ sic Therefore 5 5 sia+ sia< sia+ sib+ sic= sia< = si6 4 0 A> 6

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 S Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Let f ( abc,, ) = ( a+ b+ )( c+ ) we show that : f ( abc,, ) 0 We have f ( abc,, ) = ( a+ b+ )( c+ ) = ( a+ b+ )( c+ ) 9 ( a+ b+ )( c+ ) + ac+ a+ bc+ b+ ( a+ b+ c) f ( abc, ) = = ( a+ b+ )( c+ ) + ( a b) + ( bc ) + ( ca ) ( a+ b+ )( c+ ) + 0, abc,, 0 S4 Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia we show that : P= ( x y )( y z )( z x ) = q We have : ( x y)( y z)( z x) = q,() ( x + xy+ y )( y + yz+ z )( z + zx+ x ) = q + q+,() We wor i C. Let + i α =.Tthe, α = ad thus

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 ( x αy)( y αz)( z αx) ( α ) xyz α( x y y z z x) α ( xy yz zx ) + + + = + + + + + + + = α+ α q= α( + αq) The asume comutatio with α relaced by α = ) roves : α every where (ad usig ( ) = istead of α ( x+ y)( y+ z)( z+ x) = ( + q) α α α α α But ay two comlex u ad v satisfy ( u+ αv)( u+ v) = u + uv+ v α Hece, ( x + xy+ y )( y + yz+ z )( z + zx+ x ) = ( x+ αy)( y+ αz)( z+ αx)( x+ y)( y+ z)( z+ x) = α α α α( + αq) ( + q) = + q+ q α α From () ad (), obtai P= ( x y )( y z )( z x ) = q S9.Let a,b,c be ositive real umbers such that a+b+c=.prove that for ay ositive real umber t, ( at + bt+ c)( bt + ct+ a)( ct + at+ b) t Proosed by Titu Adreescu, Uiversity of Texas at Dallas, USA Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia S9.Let a,b,c be ositive real umbers such that a+b+c=.prove that for ay ositive real umber t, ( at + bt+ c)( bt + ct+ a)( ct + at+ b) t

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 Proosed by Titu Adreescu, Uiversity of Texas at Dallas, USA Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Usig atural logarithm, we obtai l[( at + bt+ c)( bt + ct+ a)( ct + at+ b)] lt,() l( at + bt+ c) + l( bt + ct+ a) + l( ct + at+ b) lt Cosider the fuctio f :[0, ) R, f ( t) = l( at + bt+ c) + l( bt + ct+ a) + l( ct + at+ b) lt We shall rove that this fuctio has o-egative derivative f ' ( t) 0,(*) We have at+ b bt+ c ct+ a ( ) = + + ' f t at + bt+ c bt + ct+ a ct + at+ b t at+ b bt+ c ct+ a ( at+ b) (t+ ) + + = at + bt+ c bt + ct+ a ct + at+ b ( at+ b)( at + bt+ c) ( t + t) a + (t + t+ ) ab t,() t(t+ ) ( t + t) a + (t + t+ ) ab For x y z a=, b=, c=,=x+y+z,q=xy+yz+zx,r=xyz, the iequality () becomes x+ y+ z x+ y+ z x+ y+ z (4 4 )( ) ( ) ( ) t + t + t x t t + x + t + t+ xy ( t )((8t + 7t+ ) xy t( t ) x ) 0 t 0, or t (4 xy x ) + t(7 xy+ x ) + xy 0 = xy+ x xy xy x = q + q= q + q q + q t 4 4 (7 ) 4 (4 ) 4 5 6 4 6 9 (4 ) 9 0 We have roved (*), therefore the fuctio f is icreasig. It follows that f ( t) 0, t, q.e.d

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 U4 Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Deote by t 0 =, for, we have : t t + + +.. + + +... + l= lim ( ) = lim t 0( ) Alyig l'hosital's rule, we : t t + +.. l t t l l.. l ex lim + + + l= t 0 = ex limt 0 = t t t + +.. + l + l +.. + l ex =... =! We show by iductio that: t! >,(), or =, the iequality is true. e Suose that () is true ad rove + + + + + + ( + )! > ( )! ( + > ( + )( ) > ( ) e> ( ) e e e e e> ( + ) S07 Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 Tae D BC, the i triagle ADB, we have succesively : ADB AD= AB sib a= 4csiB From the theorem of siuses we get : sia= 4siC sib si(40 B) = 4si( B 60) sib si(0 B) cos(0 B) = 4siB si(60 B) ( cosb+ si B)( sib cos B) = 4si B(siB cos B) ( 4) si B+ (+ 4 ) sib cosb cos B= 0 Deotig tgb=t, the equatio becomes : ( 4) t ( 4 ) t 0 t + + = = +, whece tgb= + B= 75 0 O4.Let a,b,c,d be oegative real umbers such that a b c d abcd + + + + = 5.Prove that abc+ bcd+ cda+ dab abcd Proosed by A Zhe-ig, Xiayag Normal Uiversity, Chia Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia We fix m= a+ b ad = c+ d.let x=ab ad y=cd, the we have m mx y xy + + = 5,(),ad abc+ bcd+ cda+ dab abcd = x+ my xy = f ( x, y) Is a liear (covex) fuctio i both x ad y. It oly reaches the maximum at boud ary values, amely : m max f ( x, y) = f ( α, β ); α {0, }, β {0, } 4 4 If m α = ad 4 β =, we have : a=b, c=d. I this case, the roblem becomes : 4

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 a c ac + + = 5, ac ac ac + a= c The equality holds for a=b=c=d= m Otherwise, if α # ad 4 β # 4, we must have m=0 or abcd=0, assume that d=0, the iequality becomes abc if a + b + c = 5 This follows immediately from AM-GM iequality ad attais equality for a= b= c= 5 We are doe. 460.If x,y,z >0 ad x+y+z+=xyz, the rove that x+ y+ z+ 6 ( yz+ zx+ xy) Solutio () Solutio by Nicuşor ZLOTA, Traia Vuia Techical College, Focşai, Romaia Iegalitatea di eut se mai oate scrie astfel yz zx xy x+ y+ z+ 6 + +,(*) yz zx xy Notam cu : a=, b=, c=, atuci yz zx xy a b c x=, y=, z=, deci coditia di eut devie bc ca ab a b c abc + + + = 4, () π Petru a,b,c umere reale ozitive exista ABC,, (0, ) astfel icat

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988,a=cosA,b=cosB,c=cosC, atuci () devie este adevarata cos A cos B cos C cosa cosb cosc + + + =, care Ilociud i (*), obtiem iegalitatea a b c abc ab bc ca + + + ( + + ) + + + + + cos A cos B cos C 6 cosa cosb cosc (cosa cosb cosb cosc cosc cos A) + 4 cosa cosb cosc (cosa cosb+ cosb cosc+ cosc cos A),() Utilizad formulele s ( R+ r) 4R cosa=, cosacosb= s + r 4R 4R, atuci iegalitatea (), devie : s ( R+ r) s + r 4R 4 8 4R 4R + s R + Rr+ r,() Petru a demostra iegalitatea (), avem urmatorul rezultat Itr-u triughi eobtuzughic exista iegalitatea Waler a + b + c 4( R+ r) s r 8Rr 4( R+ r) 0 s R + 8Rr+ r, adica () Demostratie(iegalitatea lui Waler) Avem succesiv Solutio () Notam cu x=a+ab,y=b+bc,z=c+ca, astfel icat abc=, care verifica coditia di eut. Atuci iegalitatea devie a+ ab+ b+ bc+ c+ ca+ 6 ( ( b+ bc)( c+ ca) + ( c+ ca)( a+ ab) + ( a+ ab)( b+ bc)) = ( ( bc+ )( + c) + ( ca+ )( + a) + ( ab+ )( + b), ude am folosit iegalitatea α+ β αβ si ( b+ bc)( c+ ca) = bc+ abc+ bc + abc = bc+ + bc + c= ( bc+ )( + c)

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 5. If lim ( + ) = a> 0 =, the comute + = lim ( ) a Proosed by D.M. Ba tietu-giurgiu, Matei Basarab Natioal College, Bucharest, Romaia ad Neculai Staciu George Emil Palade School, Buzau, Romaia Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Avem cazul Notam cu a = + =, atuci limita se oate scrie astfel : a a a a a lim a a a a a a e lim ( ) lim [( ) ] a l= + = + = a a Fie a a a a l = lim = lim, si alicad lema lui Cesaro-Stolz, avem succesiv : a a l a a lim lim + a a + + + = = ( + ) + + ( ( )) (9 )( ( ) ( ) ) lim + + lim + + + + + l = = = a + a (+ ) + (9+ ) ( + ) + 9 ( + ) a Deci limita este l= e a

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 Geeralizare : If, the comute im ( + ) = a> 0 = + = lim ( ), N, a I mod similar se rocedeaza la fel, deci ri urmare, limita este egala cu : ( ) a e 57: Show that i ay triagle ABC, with the usual otatios, that ( ab ) + ( bc ) + ( ca ) 9r a+ b b+ c c+ a Proosed by D.M. Ba tietu-giurgiu, Matei Basarab Natioal College, Bucharest, Romaia ad Neculai Staciu, George Emil Palade School, Buzau, Romaia Solutio () by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Notam cu x=, y=, z=, atuci iegalitatea devie a b c 9 + + + + + + + ( x y) ( y z) ( z x) 4( xy yz zx),care rerezita iegalitatea data la Olimiada Ira 996 Folosid otatiile de mai sus, obtiem 9abc 6Rrs 9r 9r R r, care rerezita iegalitatea lui Euler,ude 4( a+ b+ c) 8s,()

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 abc= 4 Rrs, a+ b+ c= s Petru mai multe detalii rivid demostrarea iegalitatii (), uteti vedea urmatoarele : [.] Yu-Dog Wu, Chag-Jia Zhao- Buildig triagle to rove algebraic iequalities, Octogo Mathematical Magazie, vol, o..a./004, October 004. []. [4] Cezar Luu, Asura iegalitatii lui Gerretse, RMT, vol XI ( seria a IV-a), ag. -0, o.4/006., htt://www.mateforum.ro/articole/gerretse.df, []. Titu Adreescu, Old ew iequalities, Solutio () by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Folosid iegalitatiile x + y + z xy+ yz+ zx 9xyz xy+ yz+ zx x + y + z, si uad : x= ab, y= bc, z= ca a+ b b+ c c+ a, obtiem 9xyz ab c 9( abc) xy+ yz+ zx 9r x+ y+ z ( a+ b)( b+ c) ab ( ) ( a+ b) a+ b 8R s + r + Rr Alicad iegalitatea lui Gerretse, avem s R Rr r R r Rr R r R r 4 + 4 + 8 ( )( + ) 0, care este evideta, deoarece R r, ude am utilizat urmatoarele formule : a+b+c=s,

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 abc= Rrs ab+ bc+ ca= s + r + Rr 4, 4, ( a+ b) = a ab abc= s( s + r + Rr), ab a+ b+ c = s a+ b 59: Proosed by Arady Alt, Sa Jose, CA Fid the smallest value of x y z + + x + y y + z z + x where real x; y; z > 0 ad xy + yz + zx = Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Avem x y z x xy xy E= + + = = ( x ) ( x ) = x + y y + z z + x x + y x + y xy y x+ y+ z = ( x ) =, ude am utilizat x + y xy Deci x+ y+ z ( xy+ yz+ zx) E =

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 Geeralizare : Fid the smallest value of + + + x y z + + x + y y + z z + x, where real x; y; z > 0 ad xy + yz + zx =, < Demostratie Vom arata ca : + + + x y z x + +,() x + y y + z z + x Folosim iegalitatea lui Cauchy-Buiaovschi-Schwarz : x x ( )( ( ) ( ( ) ( ) x + y x + y + + x x + y x x + y = x Este suficiet acum sa demostram ca : ( x ) x x ( x + y ),ceea ce este echivalet cu : x x ( x + y ) x x y,() Folosim acum iegalitatea oderata a mediilor, α β γ αa+ βb+ γc a b c, α+ β + γ =, si obtiem iegalitatii de forma

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 x + y ( x ) ( y ) y + z ( y ) ( z ) z + x ( z ) ( x ) De aici, ri isumare, obtiem iegalitatea () si astfel iegalitatea () este demostrata Petru a rezolva cerita dorita, vom utiliza iegalitatea x + y + z ( x+ y+ z) ( ( xy+ yz+ zx)) = Deci, + + + x y z x E= + + = x y y z z x + + + Petru = si =, obtiem ceea ce trebuia demostrat. E-mail :icuzlota@yahoo.com Recreatii Matematice /04 IX-5 Solutie : Nicusor Zlota Colegiul Tehic Auto Traia Vuia, Focsai Folosid iegalitatea lui Cauchy-Buiaowschi-Schwartz, avem : a ( a+ b+ c) 4 = = 4 rr rr + rr + rr a b a b b c c a, ude : rr + rr + rr = a b b c c a

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 X-54 Solutie : Nicusor Zlota Colegiul Tehic Auto Traia Vuia, Focsai Fie A,B,C,O uctele de afixe ale lui z, z, z si 0, atuci iegalitatea di eut se scrie astfel : max(,, ) AB AC BC + max( OA, OB, OC ),() Fie AB cea mai mica latura a triughiului ABC si = max( OA, OB, OC ).Iegalitatea() devie : + AB, () Folosid relatia lui Leibiz,avem : AB + BC + CA OA + OB + OC = OG + AB, deci AB. Atuci + + AB si este suficiet sa aratam ca : + AB AB ( AB ) 0 L68 Solutie : Nicusor Zlota- Colegiul Tehic Auto Traia Vuia, Focsai Notam cu = a+ b+ c, q= ab+ bc+ ca, r = abc, atuci iegalitatea di eut devie a ab a q a ( a) a b c a + = + + + + ( q) ( a) 4 a ( b)( c) ( a) + + + + + 5 5q+ r 6q 6qr 0,(),ude: ( + a) = + q+ r, 4 ( ) 4 8 5 a + b+ c+ bc = + q+ r

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988 Iegalitatea () se oate scrie astfel : ( 4q 9 r) q( 4q 9 r) 6( q r qr) 5 r( q) 0 + + + + +,, care este evideta deoarece 4 + 9 0, q r q r qr q 0 0,care rerezita iegalitatile lui Schur. L7 Solutie Nicusor Zlota, Colegiul Tehic Auto Traia Vuia, Focsai Notam cu a=y+z,b=z+x,c=x+y, atuci iegalitatea di eut este echivaleta cu : bc ( y+ z)( z+ x) x y z + ( xy+ yz+ zx)( x y + y z + z x ) 0R 4 ( a) x x y z r = = + + + + + + + + + 0 x y z 4xyz x y z ( xy yz zx)( x y y z z x ) 0 ( x y)( y z)( z x) 4,(), ude R abc ( x+ y)( y+ z)( z+ x) = = r 4S S 4xyz Daca x,y,z sut umere reale ozitive si otam cu : = x+ y+ z, q= xy+ yz+ zxr, = xyz, atuci iegalitatea () devie : r + q( q r) 5( q r) 4 r + + + + r, care este evideta, deoarece : q 4qr+ 9r 0 q 9r 0, care rerezita iegalitatile lui Schur. 0 q qr 8r 0 ( q 4qr 9 r ) r( q 9 r) 0

Revista Virtuala Ifo MateTehic ISSN 069-7988 ISSN-L 069-7988