Post-Newtonian N-body Codes. Sverre Aarseth. Institute of Astronomy, Cambridge

Similar documents
Parallel KS Block-Step Method. Sverre Aarseth. Institute of Astronomy, Cambridge

Averaging the average: Morphology transitions in spin precession of black-hole binaries

Dynamics of Stars and Black Holes in Dense Stellar Systems:

Massive star clusters

Stellar Dynamics and Structure of Galaxies

Lecture XIX: Particle motion exterior to a spherical star

Post-Keplerian effects in binary systems

Black Hole Mergers at Galactic. The Final Parsec: Supermassive. Centers. Milos Milosavljevic. California Institute of Technology

Stellar mass black holes in young massive and open clusters and their role in gravitational-wave generation

The Worst-Case Scenario. The Final Parsec Problem. and. Milos Milosavljevic. California Institute of Technology. Collaborator: David Merritt

Blue Straggler Stars Formation Channels

Stellar Black Hole Binary Mergers in Open ClusterS

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

Open problems in compact object dynamics

Implementing Few-Body Algorithmic Regularization with Post-Newtonian terms

Post-Newtonian N-body Dynamics

Forming Intermediate-Mass Black Holes in Dense Clusters Through Collisional Run-away

Binary sources of gravitational waves

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

Evolution of binary supermassive black holes via chain regularization

arxiv:astro-ph/ v1 15 Feb 2002

Dynamic Exoplanets. Alexander James Mustill

ASTR 610 Theory of Galaxy Formation Lecture 15: Galaxy Interactions

The Role of Binary-Binary Interactions in Inducing Eccentric Black Hole Mergers

Stellar collisions and their products

Computational Astrophysics

arxiv: v1 [math.ds] 6 Dec 2015

Advisor : Prof. Hagai Perets. Israel Institute of Technology, Haifa

The effect of f - modes on the gravitational waves during a binary inspiral

A Numerical Study of Boson Star Binaries

Computational Problem: Keplerian Orbits

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

How black holes get their kicks! Gravitational radiation recoil from binary inspiral and plunge into a rapidly-rotating black hole.

SPIN PRECESSION IN A 2 BODY SYSTEM: A NEW TEST OF GENERAL RELATIVITY R. F. O CONNELL DEPT. OF PHYSICS & ASTRONOMY LOUISIANA STATE UNIVERSITY

Testing GR with Compact Object Binary Mergers

Gravitational waves from binary black holes

6 th lecture of Compact Object and Accretion, Master Programme at Leiden Observatory

Gravitational waves from compact objects inspiralling into massive black holes

Classical and Quantum Dynamics in a Black Hole Background. Chris Doran

Chapter 11. Angular Momentum

Kozai-Lidov oscillations

Celestial Mechanics of Asteroid Systems

Phys 7221, Fall 2006: Homework # 5

Coalescing Binary Black Holes Originating from Globular Clusters

Evolution of SMBH-SMBH and SMBH-IMBH Binaries: Effect of Large Mass Ratio

ALGORITHMIC REGULARIZATION CHAIN (state of the art 2010) Seppo Mikkola

A map approximation for the restricted three-body problem

The Gravitational Radiation Rocket Effect. Marc Favata Cornell University GR17, Dublin, July 2004

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes

Post-Newtonian Approximation

3.4 Numerical orbit integration

arxiv:astro-ph/ v1 27 Mar 2001

Stellar-mass black holes in a globular cluster

Curved spacetime tells matter how to move

Spin and quadrupole moment effects in the post-newtonian dynamics of compact binaries. László Á. Gergely University of Szeged, Hungary

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays

κ = f (r 0 ) k µ µ k ν = κk ν (5)

Gravitational Waves from Coalescing Binaries and the post-newtonian Theory

2 Ivanova, Fregeau, & Rasio

From space-time to gravitation waves. Bubu 2008 Oct. 24

arxiv:astro-ph/ v2 15 Jan 2007

arxiv: v2 [astro-ph.ga] 21 Dec 2017

The two-body Kepler problem

Savvas Nesseris. IFT/UAM-CSIC, Madrid, Spain

Gravitational Waves. Masaru Shibata U. Tokyo

Monte Carlo Models of Dense Star Clusters

Relativistic loss-cone dynamics: Implications for the Galactic Center

Black Hole-Neutron Star Binaries in General Relativity. Thomas Baumgarte Bowdoin College

Gravitational radiation

Gravitational Waves Theory - Sources - Detection

Gravitational Waves from Boson Stars

Pinhole Cam Visualisations of Accretion Disks around Kerr BH

The first order formalism and the transition to the

3. Dynamics and test particle motion.

Binary black holes in nuclei of extragalactic radio sources 3C 345. VLBI component = radio blob superluminal motion = apparent motion

ASTRONOMY AND ASTROPHYSICS. Escape with the formation of a binary in two-dimensional three-body problem. I. Navin Chandra and K.B.

Why is the Universe Expanding?

Einstein s Equations. July 1, 2008

Central force motion/kepler problem. 1 Reducing 2-body motion to effective 1-body, that too with 2 d.o.f and 1st order differential equations

Quantum Gravity with Linear Action and Gravitational Singularities. George Savvidy. Testing Fundamental Physical Principles

Analytic methods in the age of numerical relativity

AST1100 Lecture Notes

A choreographic solution to the general relativistic three-body problem. Abstract

arxiv: v1 [astro-ph.ep] 11 Aug 2016

A hybrid N-body code incorporating algorithmic regularization and post-newtonian forces

Detectability of extrasolar debris. Mark Wyatt Institute of Astronomy, University of Cambridge

Black Hole Physics via Gravitational Waves

Black Hole-Neutron Star Binaries in General Relativity. Thomas Baumgarte Bowdoin College

THE ORIGIN AND EVOLUTION OF FREE-FLOATING PLANETS IN STAR CLUSTERS

arxiv: v2 [astro-ph.he] 6 Aug 2018

Pulsars as probes for the existence of IMBHs

Exoplanets: a dynamic field

Dynamics of spinning particles in Schwarzschild spacetime

LECTURES on COLLISIONAL DYNAMICS: 4. HOT TOPICS on COLLISIONAL DYNAMICS

Black Holes ASTR 2110 Sarazin. Calculation of Curved Spacetime near Merging Black Holes

High Energy Astrophysics

Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations

Lecture 13: Binary evolution

DYNAMICS OF MIXED BINARIES

Structure of black holes in theories beyond general relativity

Transcription:

Post-Newtonian N-body Codes Sverre Aarseth Institute of Astronomy, Cambridge Introduction N-body tools Three-body formulation PN implementations Numerical examples Discussion

Hermite Integration Taylor series for F and F (1) F = F 0 + F (1) 0 t + 1 2 F(2) 0 t2 + 1 6 F(3) 0 t3 F (1) = F (1) 0 + F (2) 0 t + 1 2 F(3) 0 t2 Prediction r j = (( 1 6 F(1) 0 δt j + 1 2 F 0)δt j + v 0)δt j +r 0 v j = (( 1 2 F(1) 0 δt j + F 0)δt j + v 0; δt j = t t 0 New forces F, F (1) Higher derivatives F (3) 0 = (2(F 0 F) + (F (1) 0 +F (1) )t) 6 t 3 F (2) 0 = ( 3(F 0 F) (2F (1) 0 +F (1) )t) 2 t 2 Corrector for i r i = 1 24 F(2) 0 t4 + 1 120 F(3) 0 t5 v i = 1 6 F(2) 0 t3 + 1 24 F(3) 0 t4

AC Neighbour Scheme Total force F(t) = n j=1 F j +F d (t) Prediction F(t) = F n +Ḟ d (t t 0 )+F d (t 0 ) Ḟ = Ḟ n +Ḟ d Time-scales t n << t d, n << N Neighbour sphere R new s = R old s ( ) np 1/3 n Neighbour selection r i r j < R s Derivative corrections F (2) ij, F(3) ij

Basic KS Relations New coordinates R = u 2 1+u 2 2+u 2 3+u 2 4 Time transformation Coordinate transformation Generalized Levi Civita matrix Inverse relations L(u) = dt = R dτ R = L(u) u u 1 u 2 u 3 u 4 u 2 u 1 u 4 u 3 u 3 u 4 u 1 u 2 u 4 u 3 u 2 u 1 R 1 = u 2 1 u 2 2 u 2 3+u 2 4 R 2 = 2(u 1 u 2 u 3 u 4 ) R 3 = 2(u 1 u 3 +u 2 u 4 ) R 4 = 0 Velocity Ṙ = 2Lu R, R = t = 2u u Equations of motion u = 1 2 hu+ 1 2 RLT P h = 2u L T P t = u u

KS Decision-Making Close encounter Time-step criterion Neighbour list search R cl = 4r h N C 1/3, t cl = β t k < t cl list all r 2 kj, t j < 2 t cl cl R 3 1/2 m Two-body selection R kl < R cl, Ṙ kl < 0 Dominant motion m k + m l R 2 kl > m k + m j R 2 kj KS initialization Initialization of c.m. F U, F U, τ & t (n) t r cm = m kr k + m l r l m k + m l Perturber search r p < 2m p m b γ min 1/3 a(1+e) Slow-down adjustment Termination test Delayed termination Final iteration Polynomial initialization γ < γ 0, τ κ t R > R 0, γ > γ T block t > t i τ from τ, τ,... and δt F j, Ḟ j, t j, j = k, l

Hermite KS with block-steps Predict u, u, h to highest order u pred = u+ τu + τ2 2 u + τ3 6 u + τ4 24 u 4 + τ 120 u pred = u + τu + τ2 2 u + τ3 6 u 4 + τ4 24 u 5, h pred = h+ τh + τ 2 h + τ 6 h + τ 24 h. Force evaluation P = L T uf, P = L T u F +rl T u F. (2) Derivatives for corrector u = 1 2 (hu+rp), u = 1 2 (h u+hu +r P +rp ), h = 2(u P), h = 2(u P +u P ). (3)

Fourth-order corrector (Hut, Makino & McMillan 1995) u corr = u old + τ 2 (u corr +u τ2 old ) 12 (u new u old ), u corr = u old + τ 2 (u new +u τ2 old ) 12 (u new u old ), h corr = h old + τ 2 (h new +h τ2 old ) 12 (h new h old ). (4) Velocity derivatives for prediction u 4 mid = u new u τ u 5 mid = 12 τ 2 old, ( u new +u old 2 u new u ) old. (5) τ Shifted from midpoint u 4 new = u 4 mid + τ 2 u 5 mid, u 5 new = u 5 mid, h new = h mid + τ h new = h 2 h mid, mid. (6)

Taylor series for physical time t = u u, t = 2(u u ), t = 2(u u +u u ), t 4 = 2(u u )+6(u u ), t 5 = 2(u u 4 +8(u u )+6(u u ), t 6 = 2(u u 5 +10(u u 4 +20(u u ). (7) Next look-up time t next = t+ 6 n=1 t n τ n. (8) n! Regularized time-step by inversion t+ 6 n=1 t n τ n n! = 0. (9) Newton-Raphson iteration to solve for τ x i+1 = x i f(x i) f (x i ).

Initial guess τ 1 = t bs t τ orig, with quantized time-step t bs (= 2 n t orig ). Commensurability condition mod (t sys, t bs ) = 0. Solve equation (9) to obtain τ bs.

Three-Body Regularization Initialconditions r i, p i, p 3 = (p 1 + p 2 ) Basic Hamiltonian µ k3 = m km 3 m k +m 3 H = 2 k=1 1 p 2 2µ k+ 1 p 1 p 2 m 1m 3 m 2m 3 m 1m 2 k3 m 3 R 1 R 2 R KS coordinate transformation Q 2 k = R k, (k = 1,2) Time transformation dt = R 1 R 2 dτ Regularized Hamiltonian Γ = R 1 R 2 (H E 0 ) Γ = 2 k=1 1 R 3 k P 2 k + 1 P T 8µ k3 16m 1A 1 A T 2P 2 3 m 1 m 3 R 2 m 2 m 3 R 1 m 1m 2 R 1 R 2 R 1 R 2 E 0R 1 R 2 Equations of motion dq k dτ = Γ P k, dp k dτ = Γ Q k Regular solutions: R 1 0 or R 2 0 Singularterm<regularterms: R 1 R 2 > max(r 1, R 2 )

Three-Body Transformations Coordinates & momenta q k = q k q 3, p k = p k Regularized coordinates (q 1 0) Q 1 = [ 1 2 ( q 1 +q 1 )] 1/2 Q 2 = 1 2 q 2/Q 1 Q 3 = 1 2 q 3/Q 1 Q 4 = 0 Regularized momenta Basic matrix A 1 = 2 P k = A k p k Q 1 Q 2 Q 3 Q 4 Q 2 Q 1 Q 4 Q 3 Q 3 Q 4 Q 1 Q 2 Q 4 Q 3 Q 2 Q 1 KS transformations Physical momenta q k = 1 2 A k T Q k p k = 1 4 A k T P k /R k Coordinates & momenta q 3 = 2 m k q k /M k=1 q k = q 3 +q k p k = p k p 3 = (p 1 +p 2 ) (k = 1,2)

PN Codes Two-body Hermite KS toy code alternative PN formulations Three-body AZ regularization dominant binary, sequential terms homework: Einstein shift Chain Algorithmic regularization compact sub-system sequential PN, unperturbed KS

6x10-8 Two-body KS 5x10-8 4x10-8 SEMI 3x10-8 2x10-8 1x10-8 0 0 5x10-9 1x10-8 1.5x10-8 2x10-8 2.5x10-8 3x10-8 3.5x10-8 4x10-8 4.5x10-8 5x10-8 Time

0.9 0.8 V/C = 0.010 V/C = 0.009 0.7 0.6 0.5 ECC 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 Time

0.006 V/C = 0.010 V/C = 0.009 0.005 0.004 SEMI 0.003 0.002 0.001 0 0 0.1 0.2 0.3 0.4 0.5 0.6 Time

0.006 IPN = 1 IPN = 3 0.005 0.004 SEMI 0.003 0.002 0.001 0 0 0.1 0.2 0.3 0.4 0.5 0.6 Time

Initialization Two-body R < R cl, Ṙ < 0, KS Hierarchy B + S H, Stability test Triple chain a 1 (1 e 1 ) < 3a 0, ṙ < 0, T Four-body chain B +B, ṙ < 0, B-B Higher orders T +B, ṙ < 0, Q

Chain Initialization Unperturbed exit ω > 1 10 3 Activate chain N ch = 2 or > 2 Alternative path perturbed KS search Selection chain members & c.m. Initialization c.m. force & chain vectors Synchronization block time-step Interface perturber list

Termination Hyperbolic KS R > R 0 or γ > 0.001 Binary KS γ > 0.1, γ = (F 1 F 2 )R 2 m 1 +m 2 Collision KS S Triple d 3 > 20a, B +S Hierarchy a 1 (1 e 1 ) < Sa 0, γ > 0.01 ARchain R 1 << R 2 +R 3 B +2S

Relativistic Effects Einstein shift ω = 6πM ac 2 (1 e 2 ) GR radiation time-scale t GR = 5 c 5 g(e)a 4 64X(1+X)m 3 1 X = m 2, g(e) (1 e2 ) 7/2 m 1 4.5 Speed of light & Schwarzschild radius c = 3 105 V, R Sch = 2M c 2 Velocities ( M V = α R pc ) 1/2, v max = ( M a ) 1/2 ( ) 1/2 1+e 1 e PN conditions ω > 1 10 4, t GR < t, r < n R Sch

Post-Newtonian Terms Equation of motion d 2 r dt = M [ ( 1+A) r ] 2 r 2 r +Bv First-order precession M = m 1 +m 2, η = m 1m 2 M 2 A 1 = 2(2+η) M r (1+3η)v2 + 3 2 ηṙ2 B 1 = 2(2 η)ṙ Higher-order precession A 2 =..., B 2 =..., A 3 =..., B 3 =... Gravitational radiation A 5/2 = 8 ( ) 17M 5 ηm r ṙ 3r +3v2 (3 Mr ) +v2 B 5/2 = 8 5 ηm r Total GR perturbation P GR = M c 2 r 2 [ (A 1 + A 2 c + A 5/2 2 c )r 3 r + (B 1 + B 2 c + B ] 5/2 2 c )v 3 GR spin dominant BH ARC energy change E = m 1m 2 M (P GR +P dyn ) vdt

Decision-Making Increasing GR effect t GR < 500, 50, 1 IPN = 1, 2, 3 GR time-scale T z = 150a4 M 3 (1 e2 ) 7/2 Myr Graduated PN w > (1,10,100) 10 4 IPN = 1, 2, 3 Coalescence R < 4R Sch = 8M c 2 Alternative merging IPN = 3, N = 2, N p = 0 IPN 2, a(1 e) < R Sch IPN = 3, N = 3, a 1 (1 e 1 ) > 100a Unperturbed KS Tidal disruption t GR < 500 & w > 1 10 4, γ < 1 10 6 KS or CHAIN

PN Elements Energy ǫ b = ǫ 0 + ǫ 1 c 2 + ǫ 2 c 4 + ǫ 3 c 6, a = M 2ǫ b ǫ 0 = 1 2 V 2 M R, η = m 1m 2 M 2 ǫ 1 = 1 2 M R +3 8 (1 3η)V 4 + 1 2 ( (3+η)V 2 +ηṙ 2) M R Angular momentum J = J 0 (1+f 1 /c 2 +f 2 /c 4 ) Eccentricity e 2 = (1 J2 Ma ) Lenz vector e = V R V/M R/R Periapse advance ω = 6πM c 2 a(1 e 2 ) Kozai-Lidov cycles T Kozai = T2 out T in ( ) 1+qout q out (1 e 2 out )3/2 g(e in,ω in,ψ)

Unperturbed GR Orbit Compact objects max (K 1,K 2) > 12 Derivatives ȧ = 64M 1M 2 (M 1 +M 2 ) 5c 5 a 3 (1 e 2 ) 7/2 ė = 304eM 1M 2 (M 1 +M 2 ) g(e) 15c 5 a 4 (1 e 2 ) 5/2 Einstein shift ω = 6π(M 1+M 2 ) ac 2 (1 e 2 ) KS rotation New elements θ = ω t T K, rotate by θ/2 a 1 = a+ȧ t, e 1 = max (e+ė t,0) Energy updating E = µ(h old H new ) Modify KS orbit Shrink, e = const; decrease, H = const Validity Unperturbed KS 1 10 4 < ω < 1 10 3 γ < 1 10 6

Membership Reduction escape R 1 or R n 1 > R, ṙ > 0 Double KS n = 4, two well separated pairs Injection γ > 1 10 2 & r p < R, ṙ p < 0 Retention n = 2, IPN > 0, ω > 1 10 3 Perturbers massive binary, N p 3 10 Perturbation γ 2m p M bh max ( ) 3 Rk d p

-220.68 PN1 and PN2.5-220.685-220.69-220.695 Energy -220.7-220.705-220.71-220.715-220.72 90.6627 90.6627 90.6627 90.6627 90.6627 90.6627 90.6627 Time

7.14405e-06 Unperturbed PN 7.144e-06 7.14395e-06 7.1439e-06 7.14385e-06 7.1438e-06 A 7.14375e-06 7.1437e-06 7.14365e-06 7.1436e-06 7.14355e-06 7.1435e-06 70 70.2 70.4 70.6 70.8 71 71.2 Time

Energy Corrections Unperturbed KS 1 10 4 < ω < 1 10 3 Perturbed KS P 2.5 & Ṗ 2.5 added to F & Ḟ Energy derivatives Ė = P v, Ë = P v+ṗ v Hermite method h = 1 2 (Ė 0 +Ė) t + 1 12 (Ë 0 Ë) t 2 Energy loss µ h Conservation E ch = E sub E E tot = E N +E ch

1 ECC 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 100 200 300 400 500 600 700 800 900 1000

Tidal Disruption ( mbh ) 1/3 Classical condition r t = r m Case A Two-body regularization Corrections Case B Mass transfer Ejection Updating Initialization Pericentre test: a(1 e) < r t Transform to apocentre θ = π/2 Mass transfer m = 0.1m Escape velocity kick KS elements and energy Chain regularization m = 0.1m Energy corrections Chain membership and tables Chain c.m. polynomials Requirements Effects Special cases Astrophysics Observations Large eccentricity Mass segregation & Kozai-Lidov WD & AGB cores Instantaneous accretion Light flickering & emission lines

0.378 Model 7 0.377 0.376 0.375 0.374 ECC 0.373 0.372 0.371 0.37 0.369 0.368 0.367 3294.39 3294.39 3294.39 3294.39 3294.39 3294.39 3294.39 3294.39 Time

3.625e-08 Model 7 3.62e-08 3.615e-08 3.61e-08 SEMI 3.605e-08 3.6e-08 3.595e-08 3.59e-08 3294.39 3294.39 3294.39 3294.39 3294.39 3294.39 3294.39 3294.39 Time

0.001 Model BH8 0.0001 1e-05 A 1e-06 1e-07 1e-08 1000 2000 3000 4000 5000 6000 7000 8000 9000 Time

0.0001 Model BH8 1e-05 1e-06 a 1e-07 1e-08 1e-09 1e-10 5062.5 5062.52 5062.54 5062.56 5062.58 5062.6 5062.62 5062.64 5062.66 5062.68 5062.7 5062.72 Time

1000 Model BH8 100 10 1 0.1 TGR 0.01 0.001 0.0001 1e-05 1e-06 1e-07 5062.5 5062.52 5062.54 5062.56 5062.58 5062.6 5062.62 5062.64 5062.66 5062.68 5062.7 5062.72 Time

Discussion IMF Mass outcome upper limit, Z BH from BSE PN simulations speed of light c = 3 105 V Dynamics binary shrinkage & Kozai-Lidov Slingshot Retention Depletion Observations Astropysics fast escapers velocity kicks ejections of BH & BBH BH + S binaries, hyper-velocities tidal disruption & BH accretion