ON THE ASYMPTOTIC STABILITY IN TERMS OF TWO MEASURES FOR FUNCTIONAL DIFFERENTIAL EQUATIONS. G. Makay

Similar documents
Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle

Congurations of periodic orbits for equations with delayed positive feedback

EVANESCENT SOLUTIONS FOR LINEAR ORDINARY DIFFERENTIAL EQUATIONS

Converse Lyapunov Functions for Inclusions 2 Basic denitions Given a set A, A stands for the closure of A, A stands for the interior set of A, coa sta

GENERALIZATION OF GRONWALL S INEQUALITY AND ITS APPLICATIONS IN FUNCTIONAL DIFFERENTIAL EQUATIONS

ARCHIVUM MATHEMATICUM (BRNO) Tomus 32 (1996), 13 { 27. ON THE OSCILLATION OF AN mth ORDER PERTURBED NONLINEAR DIFFERENCE EQUATION

DISSIPATIVE PERIODIC PROCESSES

ALMOST PERIODIC SOLUTIONS OF NONLINEAR DISCRETE VOLTERRA EQUATIONS WITH UNBOUNDED DELAY. 1. Almost periodic sequences and difference equations

Disconjugate operators and related differential equations

610 S.G. HRISTOVA AND D.D. BAINOV 2. Statement of the problem. Consider the initial value problem for impulsive systems of differential-difference equ

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS 1. Yong Zhou. Abstract

Patryk Pagacz. Characterization of strong stability of power-bounded operators. Uniwersytet Jagielloński

HYBRID DHAGE S FIXED POINT THEOREM FOR ABSTRACT MEASURE INTEGRO-DIFFERENTIAL EQUATIONS

EXISTENCE AND MULTIPLICITY OF PERIODIC SOLUTIONS GENERATED BY IMPULSES FOR SECOND-ORDER HAMILTONIAN SYSTEM

An important method in stability and ISS analysis of continuous-time systems is based on the use class-kl and class-k functions (for classical results

is a new metric on X, for reference, see [1, 3, 6]. Since x 1+x

Spurious Chaotic Solutions of Dierential. Equations. Sigitas Keras. September Department of Applied Mathematics and Theoretical Physics

TWO MAPPINGS RELATED TO SEMI-INNER PRODUCTS AND THEIR APPLICATIONS IN GEOMETRY OF NORMED LINEAR SPACES. S.S. Dragomir and J.J.

QUASI-UNIFORMLY POSITIVE OPERATORS IN KREIN SPACE. Denitizable operators in Krein spaces have spectral properties similar to those

Midterm 1. Every element of the set of functions is continuous

ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

THE NEARLY ADDITIVE MAPS

SYNCHRONIZATION OF NONAUTONOMOUS DYNAMICAL SYSTEMS

FIXED POINT THEOREMS OF KRASNOSELSKII TYPE IN A SPACE OF CONTINUOUS FUNCTIONS

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FOURTH-ORDER BOUNDARY-VALUE PROBLEMS IN BANACH SPACES

RESOLVENT OF LINEAR VOLTERRA EQUATIONS

The small ball property in Banach spaces (quantitative results)

A FIXED POINT THEOREM FOR GENERALIZED NONEXPANSIVE MULTIVALUED MAPPINGS

ON THE BEHAVIOR OF SOLUTIONS OF LINEAR NEUTRAL INTEGRODIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY

EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH UNBOUNDED POTENTIAL. 1. Introduction In this article, we consider the Kirchhoff type problem

ON THE CONVERGENCE OF THE ISHIKAWA ITERATION IN THE CLASS OF QUASI CONTRACTIVE OPERATORS. 1. Introduction

Semi-strongly asymptotically non-expansive mappings and their applications on xed point theory

A NECESSARY AND SUFFICIENT CONDITION FOR THE GLOBAL ASYMPTOTIC STABILITY OF DAMPED HALF-LINEAR OSCILLATORS

Tomasz Człapiński. Communicated by Bolesław Kacewicz

Chapter 3 Pullback and Forward Attractors of Nonautonomous Difference Equations

NONLINEAR DIFFERENTIAL INEQUALITY. 1. Introduction. In this paper the following nonlinear differential inequality

SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS. M. Grossi S. Kesavan F. Pacella M. Ramaswamy. 1. Introduction

Boundedness of solutions to a retarded Liénard equation

Existence and Uniqueness Results for Nonlinear Implicit Fractional Differential Equations with Boundary Conditions

Fractional differential equations with integral boundary conditions

On (h, k) trichotomy for skew-evolution semiflows in Banach spaces

LYAPUNOV-RAZUMIKHIN METHOD FOR DIFFERENTIAL EQUATIONS WITH PIECEWISE CONSTANT ARGUMENT. Marat Akhmet. Duygu Aruğaslan

A Fixed Point Theorem and its Application in Dynamic Programming

NONTRIVIAL SOLUTIONS TO INTEGRAL AND DIFFERENTIAL EQUATIONS

THE PERRON PROBLEM FOR C-SEMIGROUPS

New Lyapunov Krasovskii functionals for stability of linear retarded and neutral type systems

NON-MONOTONICITY HEIGHT OF PM FUNCTIONS ON INTERVAL. 1. Introduction

Abstract. Previous characterizations of iss-stability are shown to generalize without change to the

PATA TYPE FIXED POINT THEOREMS OF MULTIVALUED OPERATORS IN ORDERED METRIC SPACES WITH APPLICATIONS TO HYPERBOLIC DIFFERENTIAL INCLUSIONS

Some Fixed Point Theorems for G-Nonexpansive Mappings on Ultrametric Spaces and Non-Archimedean Normed Spaces with a Graph

Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings

WITH REPULSIVE SINGULAR FORCES MEIRONG ZHANG. (Communicated by Hal L. Smith) of repulsive type in the sense that G(u)! +1 as u! 0.

Czechoslovak Mathematical Journal

Alfred O. Bosede NOOR ITERATIONS ASSOCIATED WITH ZAMFIRESCU MAPPINGS IN UNIFORMLY CONVEX BANACH SPACES

Discrete Population Models with Asymptotically Constant or Periodic Solutions

AW -Convergence and Well-Posedness of Non Convex Functions

SOME INEQUALITIES FOR THE EUCLIDEAN OPERATOR RADIUS OF TWO OPERATORS IN HILBERT SPACES

On the simplest expression of the perturbed Moore Penrose metric generalized inverse

Periodic solutions of a class of nonautonomous second order differential systems with. Daniel Paşca

Some notes on a second-order random boundary value problem

ON THE CONTINUITY OF GLOBAL ATTRACTORS

A converse Lyapunov theorem for discrete-time systems with disturbances

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES. Jong Soo Jung. 1. Introduction

Influence of the Stepsize on Hyers Ulam Stability of First-Order Homogeneous Linear Difference Equations

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER NONLINEAR HYPERBOLIC SYSTEM

On the effect of α-admissibility and θ-contractivity to the existence of fixed points of multivalued mappings

Converse Lyapunov-Krasovskii Theorems for Systems Described by Neutral Functional Differential Equation in Hale s Form

HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM

PROJECTIONS ONTO CONES IN BANACH SPACES

FUNCTIONAL COMPRESSION-EXPANSION FIXED POINT THEOREM

BIBO stabilization of feedback control systems with time dependent delays

Pointwise convergence rate for nonlinear conservation. Eitan Tadmor and Tao Tang

INEQUALITIES IN METRIC SPACES WITH APPLICATIONS. Ismat Beg. 1. Introduction and preliminaries

On a functional equation connected with bi-linear mappings and its Hyers-Ulam stability

DISCRETE METHODS AND EXPONENTIAL DICHOTOMY OF SEMIGROUPS. 1. Introduction

Existence Results for Multivalued Semilinear Functional Differential Equations

Spectrum of one dimensional p-laplacian Operator with indefinite weight

Stability Properties With Cone Perturbing Liapunov Function method

Mathematical Journal of Okayama University

On the role playedby the Fuck spectrum in the determination of critical groups in elliptic problems where the asymptotic limits may not exist

ON TRIVIAL GRADIENT YOUNG MEASURES BAISHENG YAN Abstract. We give a condition on a closed set K of real nm matrices which ensures that any W 1 p -grad

A RETRACT PRINCIPLE ON DISCRETE TIME SCALES

J. Korean Math. Soc. 37 (2000), No. 4, pp. 593{611 STABILITY AND CONSTRAINED CONTROLLABILITY OF LINEAR CONTROL SYSTEMS IN BANACH SPACES Vu Ngoc Phat,

THE SEMI ORLICZ SPACE cs d 1

Scalar Asymptotic Contractivity and Fixed Points for Nonexpansive Mappings on Unbounded Sets

Application of Measure of Noncompactness for the System of Functional Integral Equations

On the fixed point theorem of Krasnoselskii and Sobolev

3 Stability and Lyapunov Functions

STRONG CONVERGENCE THEOREMS FOR COMMUTATIVE FAMILIES OF LINEAR CONTRACTIVE OPERATORS IN BANACH SPACES

Absolutely convergent Fourier series and classical function classes FERENC MÓRICZ

Bifurcation from the rst eigenvalue of some nonlinear elliptic operators in Banach spaces

Initial value problems for singular and nonsmooth second order differential inclusions

Journal of Inequalities in Pure and Applied Mathematics

Renormings of c 0 and the minimal displacement problem

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

ACCURATE SOLUTION ESTIMATE AND ASYMPTOTIC BEHAVIOR OF NONLINEAR DISCRETE SYSTEM

The Existence of Maximal and Minimal Solution of Quadratic Integral Equation

Oscillatory Mixed Di erential Systems

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1

ON A HYBRID PROXIMAL POINT ALGORITHM IN BANACH SPACES

Transcription:

ON THE ASYMPTOTIC STABILITY IN TERMS OF TWO MEASURES FOR FUNCTIONAL DIFFERENTIAL EQUATIONS G. Makay Student in Mathematics, University of Szeged, Szeged, H-6726, Hungary Key words and phrases: Lyapunov functional, Lyapunov's direct method, process, nonautonomous dierential systems, partial stability. 1. INTRODUCTION Denote by C the space of the continuous functions : [?r; 0]! R n, where r > 0 is a constant. In the function space C we use the norms kk = maxfj(s)j : s 2 [?r; 0]g; jjjjjj = s Z 0 j(s)j 2 ds ;?r where j j denotes an arbitrary norm in R n. If x : [t 0? r; T )! R n (0 t 0 < T 1) is continuous and t 2 [t 0 ; T ), we dene x t 2 C by x t (s) := x(t + s) for s 2 [?r; 0]. Consider the functional dierential equation _x = f(t; x t ); (1:1) where f : R + C! R n is continuous and f(t; 0) = 0 for all t 0. We suppose, that for each t 0 2 R + and each 2 C there is a unique solution x(; t 0 ; ) dened on an interval [t 0 ; t 0 + ); > 0. We assume, that the function x continuously depends on the initial data t 0 ;. Denote by K the set of strictly increasing continuous functions w : R +! R + with w(0) = 0. If V is a continuous functional from R + C into R, then _ V denotes the derivative of functional V with respect to equation (1:1) dened by _V (t; ) = _ V (1:1) (t; ) = lim sup!0+ V (t + ; x t+ (; t; ))? V (t; ) : In this paper we study the asymptotic stability of the zero solution of equation (1:1) using Lyapunov functionals. In this topic the following two theorems are basic : 1

Theorem A (see [5, Theorem 4.1]). Suppose, that for every M > 0 there is an L(M) > 0 such that [t 2 R + ; 2 C M := f 2 C : kk Mg] =) jf(t; )j L(M): (1:2) If there are M > 0, a continuous functional V : R + C M! R and functions w 1 ; w 2 ; w 3 2 K such that w 1 (j(0)j) V (t; ) w 2 (kk) ; (1:3) _V (t; )?w 3 (jjjjjj) (1:4) for all t 2 R +, 2 C M, then the zero solution of equation (1.1) is uniformly asymptotically stable. Theorem B ([3, Theorem 5.2.1]). Suppose that conditions (1.2) and (1.3) of Theorem A hold, and, instead of condition (1.4), the inequality _V (t; )?w 3 (j(0)j) (1:5) holds. Then the zero solution of equation (1.1) is uniformly asymptotically stable. It is an old problem (see [1, p. 252]), whether the boundedness condition can be dropped from Theorems A and B. Note, that - as is usual in the stability theory - the proofs of these theorems need conditions (1.4) or (1.5) only along the solutions of (1.1). We will show by examples that if conditions (1.4) and (1.5) are required only along the solutions of (1.1), then the boundedness condition cannot be dropped. At rst we replace the norms jj; kk and jjjjjj in Theorems A and B by abstract "measures" (see [6],[7] and [8]). It will be pointed out that, under these general circumstances, to the boundedness condition there corresponds an estimate between the measures. Our examples will show that these estimates are essential. 2. THEOREMS AND COROLLARIES Let X be a Banach-space. A continuous function h : R X! R + is called a measure in X, if h(t; 0) = 0. The continuous function u : R X R +! X is said to be a process (see e.g. [3, Chapter 4.1]), if u(t 0 ; x; 0) = x and u(t 0 + t 1 ; u(t 0 ; x; t 1 ); t) = u(t 0 ; x; t 1 + t) for all t 0 2 R; t 1 ; t 2 R +. For example, let U(t 0 ; ; t? t 0 ) := x t (; t 0 ; ), where x(t; t 0 ; ) (t t 0 ) is the solution of equation (1.1) with x(t 0 ; t 0 ; ) =. It is easy to see, that U is a process. 2

Let h 0 and h be measures. If u is a process and t 0 2 R, x 0 2 X, then the function u(t 0 ; x 0 ; ) is said to be a motion. Let x denote the state of this motion at t t 0, i.e. x := u(t 0 ; x; t? t 0 ). The motion is (h 0 ; h)-stable or stable in measures (h 0 ; h), if for each t t 0 and > 0 there is a (x 0 ; t 0 ; t ; ) > 0 such that h 0 (t ; x? x ) < implies h(t + t; u(t ; x; t)? u(t ; x ; t)) < for all t 0. The stability is uniform, if can be chosen independently of t. The motion u(t 0 ; x 0 ; ) is said to be (h 0 ; h)-attractive, if there is a (x 0 ; t 0 ; t ) > 0 such that, if h 0 (t ; x? x ) <, then h(t + t; u(t ; x; t)? u(t ; x ; t))! 0 (t! 1). The attractivity is uniform, if is independent of t and the convergence is uniform in t. The motion is said to be (uniformly) asymptotically stable, if it is (uniformly) stable and (uniformly) attractive. For a V : R X! R we dene the derivative _ V with respect to the process u by _V (t; x) := lim sup!0+ V (t + ; u(t; x; ))? V (t; x) : Examples: The zero solution of equation (1.1) is stable in the usual sense (see e.g. [3, Chapter 5.1]), if and only if the zero motion (U(t 0 ; 0; )) is stable in measures h 0 (t; ) = kk and h(t; ) = j(0)j. The solution x(; t 0 ; 0 ) of equation (1.1) is stable if and only if the motion U(t 0 ; 0 ; ) is stable in the previous measures. The zero solution of the ordinary dierential equation _x = F (t; x) (x 2 R n ) is partially stable (see [4]), if the zero motion of this equation is stable in the measures h 0 (t; x) = p x 2 1 + x2 2 + ::: + x2 n and h(t; x) = p x 2 1 + ::: + x2 s, where 0 < s n and x = (x 1 ; x 2 ; :::; x n ). The stability of an invariant set A with respect to this equation is equivalent to the stability in measures h 0 (t; x) = h(t; x) = d(x; A), where d(x; A) means the distance between x and A in R n. (For further examples for processes, among them partial dierential equations, see e.g. [9].) Proposition 1. Let the measures h 0 ; h be given. Suppose that there are a continuous functional V : R X! R, functions w 1 ; w 2 ; w 3 ; w 4 2 K and a measure h 1 satisfying the following conditions: w 1 (h(t; x)) V (t; x) w 2 (h 0 (t; x)) (i) _V (t; x)?w 3 (h 1 (t; x)) h 0 (t; x) w 4 (h 1 (t; x)) (ii) (iii) for all t 2 R and x 2 X. Then the zero motion of the process u is uniformly asymptotically (h 0 ; h)-stable. Proof: At rst we prove the uniform stability. Let an > 0 be given and dene () := w?1 2 (w 1()). Now if h 0 (t ; x) <, then V (t ; x) w 1 () by (i). Condition (ii) and the continuity of function V (t + 3

t; u(t ; x; t)) implies, that this function is nonincreasing in t, so w 1 (h(t + t; u(t ; x; t))) V (t + t; u(t ; x; t)) V (t ; u(t ; x; t? t )) = V (t ; x) w 1 (): Consequently, h(t + t; u(t ; x; t)) which proves the uniform stability. The conditions imply _V (t + t; u(t ; x; t))?w 3 (h 1 (t + t; u(t ; x; t)))?w 3 (w 4 (h 0 (t + t; u(t ; x; t))))?w 3 (w 4 (w?1 2 (V (t + t; u(t ; x; t))))); which is a dierential inequality for V (t + t; u(t ; x; t)). By [6, Theorem 3.1.1] we get lim V (t + t; u(t ; x; t)) = 0 t!1 uniformly in t. Obviously, inequality (i) proves the uniform asymptotic stability. Note, that inequalities (ii) and (iii) could be replaced by _V (t; x)?w 5 (h 0 (t; x)); with an appropriate w 5 2 K. In spite of this fact we separated them because it is inequality (iii) that corresponds to the boundedness condition in Theorem A. In order to formulate the problem corresponding to that of omitting the boundedness condition from Theorem A, we weaken some conditions of Proposition 1. It can be seen that conditions (ii) and (iii) may be asked only along the motions, even we can assume on the motions in condition (iii) that h(t + t; u(t ; x; t)) B for all t 0, where B is a constant independent of t ; x. Conditions (ii) and (iii) can be further weakened if we need only (nonuniform) asymptotic stability. The process u is said to be h 0 -continuous (with respect to x) if for every > 0, t 0 2 R, t 1 0 and x 0 2 X there is = (t 0 ; t 1 ; x 0 ; ) > 0 such that h 0 (t 0 ; x?x 0 ) < implies h 0 (t 0 +t 1 ; u(t 0 ; x; t 1 )?u(t 0 ; x 0 ; t 1 )) <. If the process u is h 0 -continuous, then conditions (ii) and (iii) can be asked only for suciently large values of t. This modications result in the following. 4

Theorem 1. Let measures h 0, h be given. Assume that the process u is h 0 -continuous with respect to x. Suppose that there are continuous functional V : R X! R, functions w 1 ; w 2 ; w 3 ; w 4 2 K, measure h 1, and constants T; B > 0 satisfying the following conditions: w 1 (h(t; x)) V (t; x) w 2 (h 0 (t; x)) (i) for all t t 0 and x 2 X, _V (t + t; u(t ; x; t))?w 3 (h 1 (t + t; u(t ; x; t))) (ii) for all t t 0, t T and x 2 X, and h 0 (t + t; u(t ; x; t)) w 4 (h 1 (t + t; u(t ; x; t))) (iii) for each t t 0, t T and x 2 X such that h(t + s; u(t ; x; s)) < B for all s T. Then the zero motion of the process u is asymptotically (h 0 ; h)-stable. Corollary 1 (Theorem A revisited). Suppose that all but condition (1.4) of Theorem A are satised. Suppose, in addition, that there is a T = T (t 0 ) > 0 such that the inequality _V (t; x t )?w 3 (jjjx t jjj) (1:4 0 ) holds for all t t 0 + T and for every solution x : [t 0? r; 1)! R n of (1.1). Then the zero solution of equation (1.1) is asymptotically stable. Proof: Let h 0 (t; ) := kk, h(t; ) := j(0)j and h 1 (t; ) := jjjjjj in Theorem 1. It is enough to prove, that condition (iii) in Theorem 1 follows from the boundedness condition of Theorem A. Inequalities (i) and (ii) imply the stability, so we can assume, that the solutions are bounded above in the measure h with an arbitrary B. Suppose that T r. We have from the boundedness (see condition (1.2)), that the absolute value of the derivative of function x(t; t 0 ; ) less or equal than L(B). For every t t 0 there exists t 1 2 [t? r; t] with jx(t 1 )j = kx t k. So if t t 0 + r, then s 2 [t 1? kx t k=2l(b); t 1 + kx t k=2l(b)] implies jx(s)j kx t k=2 and we have the inequality jjjx t jjj s kx t k 3 8L(B) : This means that condition (iii) is satised and the proof is complete. Theorem B cannot be deduced from Theorem 1, because one cannot estimate below the measure j(0)j by the measure kk. So we must replace inequality (iii) with a more general condition. 5

Theorem 2. Assume that all but condition (iii) of Theorem 1 are satised. Suppose, in addition that if w 2 (h 0 (t + t; u(t ; x; t))) > > 0 for all t T, then Z 1 w 3 (h 1 (t + t; u(t ; x; t)))dt = 1: T Then the zero motion of the process u is asymptotically (h 0 ; h)-stable. Proof: By h 0 -continuity of the process u, for every > 0 there exists a (t 0 ; x 0 ; t ; T; ) > 0 such that h 0 (t ; x? x ) < implies h 0 (t + T; u(t ; x; T )? u(t ; x ; T )) <. From the proof of Proposition 1, for each > 0 we get an (t 0 ; x 0 ; t ; T; ) > 0 such that if h 0 (t + T; u(t ; x; T )? u(t ; x ; T )) <, then h(t + t; u(t ; x; t)? u(t ; x ; t)) < for all t T. This proves the stability of the zero motion. To complete the proof it is enough to show that lim t!1 V (t + t; u(t ; x; t)) =: v 0 = 0: Suppose v 0 > 0. Then v 0 w 2 (h 0 (t + t; u(t ; x; t))) for all t T and the last condition of the theorem gives Z 1 w 3 (h 1 (t + t; u(t ; x; t)))dt = 1: By condition (ii) we have 0 V (t + t; u(t ; x; t)) (t! 1), which is a contradiction. V (t + T; u(t ; x; T ))? T Z t T w 3 (h 1 (t + t; u(t ; x; t)))dt!?1 Corollary 2 (Theorem B revisited). Suppose that all but condition (1.5) of Theorem B are satised. Suppose, in addition, that there is a T = T (t 0 ) > 0 such that the inequality _V (t; x t )?w 3 (jx(t)j) (1:5 0 ) holds for all t t 0 + T and for every solution x : [t 0? r; 1)! R n of (1.1). Then the zero solution of equation (1.1) is asymptotically stable. Proof: Let h 0 (t; ) := kk and h(t; ) = h 1 (t; ) := j(0)j in Theorem 2. We use the boundedness condition to prove the new condition in Theorem 2. As we saw in the proof of Corollary 1, for every t t 0 + r we have t 1 2 [t? r; t] such that jx(s)j kx t k=2 for all s 2 [t 1? kx t k=2l(b); t 1 + kx t k=2l(b)]. If kx t k for all t t 0, then it follows from the last property that Z 1 t 0 w 3 (jx(t)j)dt = 1; which proves the new condition. 6

3. EXAMPLES The following two examples show that the boundedness condition cannot be dropped from the Corollary 1 and 2. Consider the ordinary scalar dierential equation _x = _ (t) x; (x 2 R) (3:1) (t) where : [?1; 1)! (0; 1) is continuously dierentiable (r = 1; t 0 = 0). Obviously, the functions x(t) = c (t) (c 2 R) are the solutions of equation (3.1). In both examples we choose the functional V (t; ) = kk + jjjjjj. We have to construct a function which is bounded on [?1; 1) and satises an inequality _V (t; c t )?w 3 (jjjc t jjj) (Cor: 1) (3:2) respectively _V (t; c t )?w 3 (jc (t)j) (Cor: 2) (3:3) for all t 1; c 2 R and, at the same time, (t) 6! 0 as t! 1. Let a function : [?1; 1)! (0; 1) be such that (a) (n) = 1 + 1=2 n, (b) (t? 1)? (t) 1=2 n+1 for all t 2 [n; n + 1), (c) jjj jjj 1=2 n?1 for all t 2 [n; n + 1) for n =?1; 0; 1; :::. (Continuously dierentiable functions with these properties can be constructed from pieces of lines and parabolas.) Condition (b) implies that k t k is monotone nonincreasing. So _V (t; c t ) jjjc t jjj?jcjw( 1 2 n)?w 3(jjjc t jjj) for all t 0; c 2 R, i.e. inequality (3.2) holds. Condition (a) implies, that (t) 6! 0 as t! 1, so the zero solution of equation (3.1) is not asymptotically stable. We now construct a function satisfying (3.3). Let a sequence of intervals f[a n ; b n ]g 1 n=0 be given such that [a n+1?1; b n+1?1] [a n ; b n ], a 0 = 0, b 0 = 1=4. Consider a function having the following properties: (a) (t) = 1=2 n+1 for t 2 [b n ; a n+1 ], (b) (t? 1)? (t) 1=2 n+1 for all t 2 [a n ; a n+1 ), (c) _ (t)?1 and (t) 1 + 1=2 n+2 for t 2 [a n+1? 1; b n+1? 1], 7

(d) (t) monotone decreasing on interval [b n+1? 1; b n ], (e) maxf (t) : t 2 [a n ; a n+1? 1]g = 1 + 1=2 n+1 and (f) (t) 4 for all t?1. Since k t k is nonincreasing, properties (a) and (b) implies _V (t; c t ) jcj jjj t jjj?jcjw( 1 2 n )?w 3(jc (t)j) for all t 2 [b n ; a n+1 ] (n = 0; 1; :::) and c 2 R with appropriate functions w; w 3 2 K. If t 2 [a n ; b n ], then _V (t; c t ) jcj k t k?jcj?jcj (t) 4 =? 1 jc (t)j: 4 Consequently, (3.3) is satised for all t 1. On the other hand, condition (e) guarantees (t) 6! 0 (t! 1), i.e. the zero solution of equation (3.1) is not asymptotically stable. REFERENCES 1. Burton T. A., Volterra Integral and Dierential Equations, Academic Press (1983). 2. Burton T. & Hatvani L., Stability theorems for nonautonomous functional dierential equations by Lyapunov functionals, Tohoku Math. J. 41, 65-104 (1989). 3. Hale J., Theory of functional dierential equations, Springer-Verlag New York-Heidelberg-Berlin (1977). 4. Hatvani L., On partial asymptotic stability and instability, Acta Sci. Math. 45, 219-231 (1983). 5. Hatvani L., On the asymptotic stability of the solutions of functional dierential equations, Coll. Math. Soc. J. Bolyai 53, 227-238 (1988). 6. Lakshmikantham V., Leela S. & Martynyuk A. A., Stability analysis of nonlinear systems, Marcel Dekker, Inc. New York and Basel (1989). 7. Lakshmikantham V. & Xin Zhi Liu, Perturbing families of Lyapunov functions and stability in terms of two measures, J. Math. Anal. Appl. 140, 107-114 (1989). 8. Movchan A. A., Stability of processes with respect to two metrics, J. Appl. Math. Mech. 24, 1506-1524 (1961). 9. Stephen H. Saperstone, Semidynamical Systems in Innite Dimensional Spaces, Springer-Verlag New York- Heidelberg-Berlin (1981). 8