Challenges of finite systems stat. phys.

Similar documents
Global Optimization, Generalized Canonical Ensembles, and Universal Ensemble Equivalence

Slow dynamics in systems with long-range interactions

arxiv: v1 [cond-mat.stat-mech] 19 Feb 2016

arxiv:nucl-th/ v2 26 Feb 2002

An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles

Generalized canonical ensembles and ensemble equivalence

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

Metastability in the Hamiltonian Mean Field model and Kuramoto model

1 Notes on the Statistical Mechanics of Systems with Long-Range Interactions

Global Optimization, the Gaussian Ensemble, and Universal Ensemble Equivalence

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 1 Feb 2007

Phase transitions for particles in R 3

Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy

Qualitative Picture of Scaling in the Entropy Formalism

Thus, the volume element remains the same as required. With this transformation, the amiltonian becomes = p i m i + U(r 1 ; :::; r N ) = and the canon

Quasi-stationary-states in Hamiltonian mean-field dynamics

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21

An Outline of (Classical) Statistical Mechanics and Related Concepts in Machine Learning

arxiv: v1 [nucl-th] 28 Jun 2012

ChE 210B: Advanced Topics in Equilibrium Statistical Mechanics

Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy

Dynamics and Statistical Mechanics of (Hamiltonian) many body systems with long-range interactions. A. Rapisarda

arxiv: v2 [cond-mat.stat-mech] 31 Dec 2014

Microcanonical scaling in small systems arxiv:cond-mat/ v1 [cond-mat.stat-mech] 3 Jun 2004

arxiv:cond-mat/ v1 10 Aug 2002

Thermodynamics of nuclei in thermal contact

MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM. Contents AND BOLTZMANN ENTROPY. 1 Macroscopic Variables 3. 2 Local quantities and Hydrodynamics fields 4

PHYS 352 Homework 2 Solutions

although Boltzmann used W instead of Ω for the number of available states.

A Brief Introduction to Statistical Mechanics

Statistical mechanics of systems with long range interactions

Dynamics and Thermodynamics of Systems with Long-Range Interactions: An Introduction

Recent progress in the study of long-range interactions

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Property of Tsallis entropy and principle of entropy increase

Bimodality and latent heat of gold nuclei

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

Chapter 2 Ensemble Theory in Statistical Physics: Free Energy Potential

to satisfy the large number approximations, W W sys can be small.

Thermodynamic versus statistical nonequivalence of ensembles for the mean-field Blume-Emery- Griffiths model

The general reason for approach to thermal equilibrium of macroscopic quantu

How the Nonextensivity Parameter Affects Energy Fluctuations. (Received 10 October 2013, Accepted 7 February 2014)

Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences

Temperature Fluctuations and Entropy Formulas

arxiv:cond-mat/ v1 8 Jan 2004

Statistical mechanics in the extended Gaussian ensemble

1 The fundamental equation of equilibrium statistical mechanics. 3 General overview on the method of ensembles 10

i=1 n i, the canonical probabilities of the micro-states [ βǫ i=1 e βǫn 1 n 1 =0 +Nk B T Nǫ 1 + e ǫ/(k BT), (IV.75) E = F + TS =

Collective Effects. Equilibrium and Nonequilibrium Physics

Equilibrium, out of equilibrium and consequences

Cluster and virial expansions for multi-species models

Part II Statistical Physics

Principles of Equilibrium Statistical Mechanics

arxiv: v2 [cond-mat.stat-mech] 8 Feb 2016

Thoughts on Negative Heat Capacities. Jeremy Dunning-Davies, Department of Mathematics and Physics (retd.), Hull University, England.

Non-Gaussian equilibrium in a long-range Hamiltonian system

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 25 Jul 2003

arxiv: v1 [cond-mat.stat-mech] 21 Oct 2007

ChE 503 A. Z. Panagiotopoulos 1

( ) Lectures on Hydrodynamics ( ) =Λ Λ = T x T R TR. Jean-Yve. We can always diagonalize point by point. by a Lorentz transformation

Generalizing the Extensive Postulates

caloric curve of King models

Lecture 6 non-equilibrium statistical mechanics (part 2) 1 Derivations of hydrodynamic behaviour

From time series to superstatistics

Statistical Mechanics

arxiv: v1 [cond-mat.stat-mech] 7 Nov 2017

Finite-size analysis via the critical energy -subspace method in the Ising models

Information Theory and Predictability Lecture 6: Maximum Entropy Techniques

Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: A basis for q-exponential distributions

Phase transitions in dilute stellar matter. Francesca Gulminelli & Adriana Raduta

Grand Canonical Formalism

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 25 Sep 2000

Theoretical Statistical Physics

Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017

Generalized Entropy Composition with Different q Indices: A Trial

763620SS STATISTICAL PHYSICS Solutions 5 Autumn 2012

Ultracold Atoms and Quantum Simulators

Information Thermodynamics on Causal Networks

arxiv: v2 [cond-mat.stat-mech] 10 Feb 2012

Table of Contents [ttc]

Algebraic Correlation Function and Anomalous Diffusion in the HMF model

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 12 Jan 2006

Recitation: 10 11/06/03

Information Theory in Statistical Mechanics: Equilibrium and Beyond... Benjamin Good

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 27 Feb 2006

CH 240 Chemical Engineering Thermodynamics Spring 2007

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

The Hamiltonian Mean Field Model: Effect of Network Structure on Synchronization Dynamics. Yogesh Virkar University of Colorado, Boulder.

Ennio Arimondo, Martin Wilkens

Superstatistics: theory and applications

Molecular Modeling of Matter

3.320 Lecture 18 (4/12/05)

5. Systems in contact with a thermal bath

9.1 System in contact with a heat reservoir

arxiv:cond-mat/ v1 10 Nov 1994

Ensemble equivalence for non-extensive thermostatistics

ISSN Article. Tsallis Entropy, Escort Probability and the Incomplete Information Theory

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H

Transcription:

Challenges of finite systems stat. phys. Ph. Chomaz, Caen France Connections to other chapters Finite systems Boundary condition problem Statistical descriptions Gibbs ensembles - Ergodicity Inequivalence, thermo limit Phase transitions Open,transient

1) Connections to other chapters Non saturating infinite systems Dieter s chapter Clusters (evaporative ensemble) Dynamics and equilibrium Eric s chapter Many chapters Non extensive dynamics (Tsallis) Few discussions

2) Finite systems Finite number of particles in interaction Boundary conditions / continuum problem Bound states OK Trapped particles OK Model cases OK In general, H undefined without boundaries! => System & Thermodynamics undefined => Ex: Entropy S(E)=log W(E) undefined σ (x,y,z) = 0 Boundaries, σ (x,y,z) = 0 : infinite information! => Use of information theory mandatory => Use of constraints on volume and shape (eg <r 2 >)

3) Statistical physics R. Balian «Statistical mechanics» Macroscopic One realization (event) can be an equilibrium One system = ensemble of sub-systems Microscopic Ensemble of replicas needed One realization (event) cannot be an equilibrium Gibbs: Equilibrium = maximum entropy Average over time if ergodic Average over events if chaotic/stochastic Average over replicas if minimum info! Ergodic some times used instead of uniform population of phase space

3) Statistical physics Ergodic (Bound systems only) time average = phase space average Ergodic => < statistics Only conserved quantities (E, J, P )! R. Balian «Statistical mechanics»! p q Mixing p Unknown initial conditions q t -> p Not only conserved statistical variables q Stochastic Complex / min info Few relevant observations <A l > => state variables (not only conserved) Many irrelevant degree of freedom p Unknown dynamics p q p q q

Validity conditions Ergodic Bound systems only For time averages only Should be demonstrated (difficult) Only conserved quantities (E, J, P ) R. Balian «Statistical mechanics» p q Mixing Stochastic Complex / min info For ensemble of events Should be demonstrated (difficult) Comparison with models Consistency checks (e.g. T 1 =T 2, σ A2 =- l log Z) Independence upon history How far are we from equilibrium? p q

Information theory for finite system {( )} R. Balian «Statistical mechanics» Statistical ensemble: (n), p (n) Shannon information: I = p (n ) log p (n ) (n ) {< A ˆ l >= p (n ) (n ) Information = observations: A l } (n ) Min. bias state: min I under constraints {< ˆ A l >} λ l => Lagrange multipliers Boltzman probability p (n ) = Z 1 e Z Partition sum Z(λ) = Constraints = EOS (n ) l λ l A ( n) l e l λ l A ( n) l < ˆ A l >= λl log Z(λ)

Many different ensembles Constraints Conserved quantities Sorting Boundaries! Boundary = information Microcanonical undefined E Microcanonical <E> Canonical V Isochore <r 3 > Isobare <Q 2 > Deformed <p.r> Expanding <A> Grand <L> Rotating... Others Boundaries = spatial constraints, ex:<v>=<r 3 > => (n p ) βλ = Z 1 exp βe (n ) λ 0 V (n ) => isobar ensemble Valid also for open systems (extension <r 2 >)

4) Finite systems => ensemble inequivalence R. Balian «Statistical mechanics» Géneral ref.: -!T!h!i!r!r!i!n!g!!W!!1!9!7!0!!Z!.!!P!h!y!s!.!!2!3!5!!3!3!9! -!!H!!!u!l!l!e!r!!A!!1!9!9!4!!Z!.!!P!h!y!s!.!!B!!9!3!!4!0!1!! - E!l!l!i!s!!R!!S!,!!H!a!v!e!n!!K!!a!n!d!!T!u!r!k!i!n!g!t!o!n!!B!!2!0!0!0!!J!.!!S!t!a!t!.!!P!h!y!s!.!!1!0!1!!9!9!9! -!!D!a!u!x!o!i!s!!T!!,!!H!o!l!d!s!w!o!r!t!h!!P!!a!n!d!!R!u!f!f!o!!S!!2!0!0!0!!E!u!r!.!!P!h!y!s!.!!J!.!!B!!1!6!!6!5!9! -!!G!r!o!s!s!!D!!H!!E!!2!0!0!1!!M!i!c!r!o!c!a!n!o!n!i!c!a!l!!T!h!e!r!m!o!d!y!n!a!m!i!c!s!:!!P!h!a!s!e!!T!r!a!n!s!i!t!i!o!n!s!i!n! S!m!a!l!l!!S!y!s!t!e!m!s!!(!L!e!c!t!u!r!e!!N!o!t!e!s!!i!n!!P!h!y!s!i!c!!6!6!)!!(!!W!o!r!l!d!!S!c!i!e!n!t!i!f!i!c!)! -!B!a!r!r!é!!J!,!!M!u!k!a!m!e!l!!D!!a!n!d!!R!u!f!f!o!!S!!2!0!0!1!!P!h!y!s!.!!R!e!v!.!!L!e!t!t!.!!8!7!!0!3!0!6!0!1 Cond-mat/0209357! -!I!s!p!o!l!a!t!o!v!!I!!a!n!d!!C!o!h!e!n!!E!!G!!D!!2!0!0!1!!P!h!y!s!i!c!a!!A!!2!9!5!!4!7!5! -!!G!u!l!m!i!n!e!l!l!i!!F!!a!n!d!!C!h!o!m!a!z!!P!h!.!!2!0!0!2!!P!h!y!s!.!!R!e!v!.!!E!!6!6!!0!4!6!1!0!8 Phase trans.: - K!a!s!t!n!e!r!!M!,!!P!r!o!m!b!e!r!g!e!r!!M!!a!n!d!!H!!!u!l!l!e!r!!A!!2!0!0!0!!J!.!!S!t!a!t!.!!P!h!y!s!.!!9!9!!1!2!5!1 - G!r!o!s!s!!D!!H!!E!!a!n!d!!V!o!t!y!a!k!o!v!!E!!V!!2!0!0!0!!E!u!r!.!!P!h!y!s!.!!J!.!!B!!1!5!!1!1!5! -!!H!u!l!l!e!r!!A!!a!n!d!!P!l!e!i!m!l!i!n!g!!M!!2!0!0!2!!I!n!t!.!!J!.!!M!o!d!.!!P!h!y!s!.!!C!!1!3!!9!4!7! -!!P!l!e!i!m!l!i!n!g!!M!,!!B!e!h!r!i!n!g!e!r!!H!!a!n!d!!H!!!u!l!l!e!r!!A!!2!0!0!4!!P!h!y!s!.!!L!e!t!t!.!!A!!3!2!8!!4!3!2! - P. Chomaz and F. Gulminelli, in T. Dauxois et al, Lecture Notes in Physics Vol. 602, Springer (2002),! - J. Barré, D. Mukamel & S. Ruffo Cond-mat/0209357 - P.H. Chavanis & I. Ispolatov, Phys. Rev. E 66 (2002) 036109 - K!a!s!t!n!e!r!!M!, J. Stat. Phys. 107 (2002) 133 - I. Ispolatov & E.G.D. Cohen, Physica A 295 (2001) 475

4) Finite systems => ensemble inequivalence R. Balian «Statistical mechanics» Microcanonical ensemble: Shannon = Boltzmann: Temperature (EOS): Canonical ensemble: Partition sum = Laplace tr.: Caloric curve (EOS) Canonical S c = Legendre tr.: p (n ) = δ(e E (n ) ) /W (E) S(E) = logw (E) T 1 = E S(E) p (n ) ( n) βe = e /Z(β) Z(β) = de e βe W (E) < E >= β log Z(β) S c (< E >) = log Z(β) + β < E > But canonical S c (<E>) microcanonical S(E) => Canonical EOS microcanonical EOS!

Inequivalence Canonical Energy dist. P β ( E) = e S(E ) βe /Z(β) Exact link microcan. entropy Energy Distribution 100 10 1 0.1 F. Gulminelli & Ph. Ch., PRE 66 (2002) 46108 Liquid Entropy <E> Gas Monomodal E Most probable: E S(E) = β Lattice-gas Model Average: <E>β E T = 1 β Canonical EOS microcan. Temperature Microcanonical Bimodal: ensembles inequivalent < E > β p (1) (1) E T = β 1 + p (2) ( 2) E T = β 1 Canonical interpolates 2 stable microcan. solutions Canonical <E> Canonical (Most Probable) Lattice-Gas

Finite systems => ensemble inequivalence Many different ensembles: Constraints and boundaries Boundaries = information incompatible with max S Various ensembles are related: Laplace transform: Z(β) = de e βe W (E) Probabilities (sorting): P β ( E) = W (E)e βe /Z(β) But are not equivalent: Small corrections far from phase transitions Strong deviations associated with phase transitions Disappears at thermo limit,

5) Phase transition in infinite systems Thermodynamical potentials non analytical at L.E. Reichl, Texas Press (1980) N Order of transition: discontinuity in n β logz Ehrenfest s definition Ex: first order: discontinuous EOS: R. Balian, Springer (1982) Temperature F = T logz ß 0-1 Z = e βe ( n) (n ) E 1 E 2 Caloric curve Energy <E>= β logz

1st order in finite systems c PC & Gulminelli Phys A 330(2003)451 Im(ß) ß 0 Complex ß Re(ß) Free order param. (canonical) Zeroes of Z reach real axis Yang & Lee Phys Rev 87(1952)404 c Bimodal distribution (P b (E)) c K.C. Lee Phys Rev E 53 (1996) 6558 Fixed order para. (microcanonical) Pβ0 ( E) Temperature ß 0-1 E distribution at ß 0 E 1 E 2 Energy Caloric curve Back Bending in EOS (T(E)) c K. Binder, D.P. Landau Phys Rev B30 (1984) 1477 Abnormal fluctuation (σ k (E)) s k / T2 E 1 E 2 Energy C k (3/2) J.L. Lebowitz (1967), PC & Gulminelli, NPA 647(1999)153 E 1 E 2 Energy! Curvature of S should not be confused with variations of variables along transformations

Microcanonical specific heat (C<0) & bimodalities: Astro:- - V.A. Antonov Len. Univ. 7,135 (1962); IAU Symp.113, 525 (1995). - D. Lynden-Bell & R. Wood, Mon. Not. R. Astron. Soc. 138, 495 (1968); D. Lynden-Bell, Physica A 263, 293 (1999). - W. Thirring, Z. Phys. 235, 339 (1970); - P. Hertel & W. Thirring, Ann. of Phys. 63, 520 (1971). - P.H. Chavanis, in Lect. Not in Phys. Vol. 602, Springer (2002), - T. Padhmanaban, in Lect. Not in Phys. Vol. 602, Springer (2002), - J. Katz, Not.R.Astr.Soc. 183(1978)765 - I. Ispolatov & E.G.D. Cohen, Physica A 295 (2001) 475 General: - D.H.E. Gross, Lect. notes Phys. 66 World scientific Singapore - M. Promberger & A. Huller, Z. Phys. B97(1995)341; Z. Phys. B93(1994)401 - PC & Gulminelli Phys A 330(2003)451 - F. Bouchet & J. Barré, Cond-mat/0303307 Mean-field: - J. Barré, D. Mukamel & S. Ruffo Cond-mat/0209357 - T. Dauxois, V. Latora, A. Rapisarda, S. Ruffo & A. Torcini, in Lec. Not. Phys. 602 Springer (2002) - M. Antoni, S. Ruffo, A. Torcini, Cond-mat/0401177 Clusters: - R.M. Lynden-Bell, Mol. Phys. 86 (1995) 1353 - P. Labastie et al,prl 65(1990)1567 DNA: - A. Wynveen, D.J. Lee & A.A. Kornyshev, Physics/0408063 Scaling: - H. Behringer, M. Pleimling & A. Hüller, Cond-mat/0411153&0311211 - M. Kastner & M Promberger, J. Stat. Phys. 53 (1988) 795 Topologie E : - R. Franzosi, M. Pettini & L. Spinelli, Math-Ph0305032 Entropy: - J. Naudts, Cond-mat/0412683

6) Statistical description evolving systems Time dependent statistical ensemble Max S at t with constraint <A> from t 0 = t - Dt, Heisemberg picture: => time odd observables A ˆ e iδt H ˆ A ˆ e iδt H ˆ = A ˆ iδt[ H ˆ, A ˆ ] +... B ˆ = i[ H ˆ, A ˆ ] Ex: unconfined finite <r 2 > system and radial flow Finite <r 2 > system at t 0 : <=> External potential <=> equilibrium in a trap λ 0 r 2 State at time t: <=> Radial flow Ex: Ideal gas: p (n ) exp β(e (n ) ' λ 0 r ˆ 2( n) ) B ˆ = i[ H ˆ, r ˆ 2 ] = (ˆ r p ˆ + r ˆ p ˆ ) /m p (n ) (t) exp β(t) (p(n ) h(t)r (n ) ) 2 2m (n )2 λ(t) r Balian, Al-Hassid & Reinhardt, An. Phys. (1987); PC & Gulminelli & Juillet (2004)

7) Conclusions: Challenges Statistical description of non extensive systems Conceptual justification Inequivalence Phase transition in finite systems Abnormal thermodynamics Negative curvature Phase transition in Nuclei EOS Phase diagram