Electroweak physics and the LHC an introduction to the Standard Model

Similar documents
Higgs Boson Phenomenology Lecture I

Lecture III: Higgs Mechanism

Introduction to the SM (5)

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Standard Model & Beyond

The Standard Model and beyond

Flavour Physics Lecture 1

NTNU Trondheim, Institutt for fysikk

Introduction to particle physics Lecture 6

A model of the basic interactions between elementary particles is defined by the following three ingredients:

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

The mass of the Higgs boson

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

The Strong Interaction and LHC phenomenology

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC)

PARTICLE PHYSICS Major Option

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Supersymmetry, Dark Matter, and Neutrinos

Lecture 6 The Super-Higgs Mechanism

Group Structure of Spontaneously Broken Gauge Theories

The Higgs Boson and Electroweak Symmetry Breaking

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Particle Physics. Dr Victoria Martin, Spring Semester 2013 Lecture 17: Electroweak and Higgs

chapter 3 Spontaneous Symmetry Breaking and

Le Modèle Standard et ses extensions

Adding families: GIM mechanism and CKM matrix

The Standard Model Part. II

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

Weak interactions and vector bosons

Lepton Flavor Violation

Gauge Symmetry in QED

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Beyond the Standard Model

E 6 Spectra at the TeV Scale

Hunting New Physics in the Higgs Sector

Leptons and SU(2) U(1)

Lecture 16 V2. October 24, 2017

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

QED and the Standard Model Autumn 2014

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

QFT Dimensional Analysis

SM predicts massless neutrinos

The Standard Model and Beyond

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16

Axions Theory SLAC Summer Institute 2007

12.2 Problem Set 2 Solutions

+ µ 2 ) H (m 2 H 2

Fundamental Symmetries - 2

Introduction to Supersymmetry

Foundations of Physics III Quantum and Particle Physics Lecture 13

Triplet Higgs Scenarios

Electroweak Theory, SSB, and the Higgs: Lecture 2

Aula/Lecture 18 Non-Abelian Gauge theories The Higgs Mechanism The Standard Model: Part I

NTNU Trondheim, Institutt for fysikk

Theoretical Particle Physics Yonsei Univ.

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Introduction to flavour physics

Theory toolbox. Chapter Chiral effective field theories

A Domino Theory of Flavor

Theory of CP Violation

The Higgs Mechanism and the Higgs Particle

Fundamental Symmetries - l

Non-Abelian SU(2) H and Two-Higgs Doublets

Electroweak Theory: 2

Particules Élémentaires, Gravitation et Cosmologie Année Le Modèle Standard et ses extensions. The Flavour Sector

Quantum Field Theory 2 nd Edition

Theory of Elementary Particles homework VIII (June 04)

Lecture 7: N = 2 supersymmetric gauge theory

Current knowledge tells us that matter is made of fundamental particle called fermions,

For Review Only. General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model. Canadian Journal of Physics

Electroweak Symmetry Breaking and the Higgs Mechanism

Introduction to particle physics Lecture 13: The Standard Model

S 3 Symmetry as the Origin of CKM Matrix

The Physics of Heavy Z-prime Gauge Bosons

Dynamical supersymmetry breaking, with Flavor

Interactions... + similar terms for µ and τ Feynman rule: gauge-boson propagator: ig 2 2 γ λ(1 γ 5 ) = i(g µν k µ k ν /M 2 W ) k 2 M 2 W

Models of Neutrino Masses

Symmetries, Groups Theory and Lie Algebras in Physics

Electroweak Theory: 3

Higgs Physics from the Lattice Lecture 1: Standard Model Higgs Physics

Non Abelian Higgs Mechanism

Elementary Particles, Flavour Physics and all that...

Gauge Theories of the Standard Model

Genesis of Electroweak. Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

THE STANDARD MODEL AND THE GENERALIZED COVARIANT DERIVATIVE

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Patrick Kirchgaeßer 07. Januar 2016

Electroweak interactions of quarks. Benoit Clément, Université Joseph Fourier/LPSC Grenoble

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

An Introduction to the Standard Model of Particle Physics

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

The Phases of QCD. Thomas Schaefer. North Carolina State University

Transcription:

Electroweak physics and the LHC an introduction to the Standard Model Paolo Gambino INFN Torino LHC School Martignano 12-18 June 2006

Outline Prologue on weak interactions Express review of gauge theories SM gauge sector Hidden symmetries SM Higgs sector Precision tests of the SM anomalous magnetic moments Computing G F Global fit and the Higgs mass Electroweak physics at LHC 2

A few references books: Peskin & Schoeder, Quantum Field Theory Donoghue,Golowich,Holstein, Dynamics of the SM Cheng & Li, Gauge theory of elementary particle physics Becchi & Ridolfi, Introduction to relativistic processes and the SM lectures sets: Altarelli, hep-ph/0011078 Ridolfi, see http://www.ge.infn.it/~ridolfi/ 3

Prologue

Weak forces are weak Fermi Lagrangian describes beta (semileptonic) decays a=1.269±0.003 G (µ) ' 1.16639 x 10-5 GeV -2 ; G (β) ' G (µ) = G F typical process G F E 2 ; n decay G F m p2 10-5 α =1/137 growth with energy incompatible with unitarity: only valid up to Λ 100GeV non-renormalizable: gives good predictions, but they cannot be consistently improved short range interaction r W 1x10-3 fm vector currents: Intermediate Vector Boson hypothesis 5

Intermediate Vector Boson G F µ νµ _ ν e e - 6

Further lessons from L Fermi G (µ) ' 1.16639 x 10-5 GeV -2 ; Improved fundamental theory should moreover include: chiral structure, P and C violation universality of weak coupling G (β) ' G (µ) = G F flavor violation (K l3 ) but no flavor changing neutral currents (FCNC) common vector interactions hint at possible electroweak unification (Schwinger 1957, Glashow...) All these points have a natural solution in the framework of Gauge theories 7

Express review of gauge theories

Continuous symmetries Classical Mechanics: invariance of a system under cont. transf. constants of motion Quantum Mechanics: O i conserved if [O i,h]=0, O i generator of unitary tranf. that leaves system unchanged Field Theory T: φ i (x) U ij φ j (x) leaves EOM or S= d 4 x L unchanged: it is a symmetry. Noether Theorem: the current is conserved: µ j µ (x)=0. Q= d 3 x j 0 (x) is constant and generates the transformation At the quantum level the symmetry generates Ward identities between Green s functions Noether currents physical weak currents? 9

Examples of global symmetries L µ = φ * µ φ -µ 2 φ 2 -λ φ 4 φ (x) e i α φ (x) change of phase charge current j µ =i [ µ φ * φ φ * µ φ] is conserved L = µ φ µ φ -µ 2 φ φ -λ/2 (φ φ) 2 SU(2) invariant under φ φ +½ iε i τ i φ τ i Pauli matrices 3 conserved currents, 3 charges satisfy Lie algebra [Q a,q b ]= i ε abc Q c 10

Gauge theories: local abelian symmetry _ Dirac free L = ψ(i / m) ψ invariant under ψ e i e α ψ, ψ e -i e α ψ If α=α(x) local invariance requires µ D µ µ -i e A µ, covariant derivative [minimal coupling] A µ A µ + µ α(x), L QED _ A µ real vector field [E&M gauge invariance] = ψ (i D m) ψ ¼F µν F µν _ / / = ψ (i m) ψ + ea µ J µ ¼F µν F µν with F µν ψ = i/e [D µ,d ν ]ψ gauge invariant No photon gauge invariant mass term. Ward identities k µ M µ (k)=0 11

Non-abelian local symmetry SU(N): N 2-1 generators t a in representation R, [t a,t b ]=i f abc t c ; f abc antisymmetric Generic element U=e igαa t a identifies a gauge t. of ψ Yang-Mills (1954) Covariant derivative D µ =1 µ -i g A µ a t a, D µ UD µ U -1 (D µ transf. like ψ) F a µν t a ψ = i/g [D µ,d ν ]ψ F a µν= µ Α aν - ν A µ a+g f abc A µ b A ν c kinetic term -¼ F a µν F a µν is gauge invariant, unlike F a µν Gauge field self-interaction imposed by gauge invariance. Yang-Mills theories are non-trivial even without matter fields. Gauge fields carry charge: cons. currents include a pure gauge term 12

Gauge theories: symmetry dictates dynamics By promoting global to local symmetry [local gauge principle] gauge theories allow for vector bosons Symmetry makes some d.o.f. redundant: A 0, A are c-numbers. Gauge fixing necessary to quantize theory. Symmetry dictates form of allowed interactions. Gauge fields selfinteract, hence single universal coupling for each group g J µa A µ a Symmetry permits the renormalization of gauge theory Symmetry forbids mass terms for the vector bosons. QCD, based on SU(3) is the most beautiful realization [asymptotic freedom] 13

The gauge sector of the SM

Which gauge symmetry? SU(2) group in fundamental representation, simplest choice ν R,e R singlets Neutral current J µ3 J µγ (because of chirality & neutrinos) what is it? Now promote SU(2) to local symmetry: D µ = µ -i g W iµ T i ; W ± µ =(W1 µ i W2 µ )/ 2 Explains G F in terms of gauge couplings G F = 2 g 2 /8M W 2 15

Neutral currents: electroweak unification One way to solve the NC problem is to extend the gauge group SU(2) SU(2)xU(1). Extra abelian hypercharge Y differs for L,R fields. D µ = µ -i g W iµ T i -½i g Y B µ In order to have J µγ coupled to A µ : T 3 g sinθ W +½Y g cosθ W =eq The choice Y(L)=-1 Y(e R )=-2 Y(ν R )=0 implies g sinθ W =g cosθ W =e The Z neutral current has charge Q Z =(T 3 -Q s 2 W )/c W s W, s W =sinθ W A definite prediction: weak NCs have been first observed in 1973! 16

Hadronic currents Using QUARK L doublets and R singlets, it s like for leptons but flavor change has long been observed in charged currents (CC). On the other hand, FCNCs strongly suppressed (higher order effects): Solution (Glashow, Iliopoulos, Maiani 1970): quark doublets 17

The CKM matrix Ciuchini s lectures describes Flavor Violation (mixing between generations of quarks) in the SM V CKM = V V V ud cd td V V V us cs ts V V V ub cb tb = A 3 λ 1 Wolfenstein parameterization 1 2 λ 2 λ ( 1 ρ i ) η 1 λ A 1 2 λ 2 2 λ A 3 λ ( ρ i ) A 2 λ 1 η + O ( λ 4 ) 3 angles and 1 phase with strong hierarchy: λ 0.22 sine of Cabibbo angle, A,ρ,η=O(1) The CKM phase is the only source of CP violation in the SM 18

Summary of matter fields SU(2) U(1) (Y) SU(3) QCD L 2-1 1 e R 1-2 1 Q 2 1/3 3 u R 1 4/3 3 d R 1 2/3 3 ν R 1 0 1 NB SU(2)xU(1) is semisimple: Y is arbitrary no charge quantization in SM 19

Renormalizability k Loops integrations generally divergent in the UV A theory is renormalizable if all divergences can be reabsorbed at each pert. order in a redefinition of the parameters of L. systematics of renormalization: dim 4 terms in L are generally renormalizable. Cutoff dependence is power-suppressed. Yang-Mills gauge theories are renormalizable, like QED Renormalizability guiding principle in SM evolution: weak coupling renormalizable th. are predictive, have small pert. corrections Massive vector bosons: L=-¼( µ W ν - ν W µ )( µ W ν - ν W µ )+M W2 W µ W µ /2 20

A massive problem Also fermion masses break SU(2) symmetry: because e R and e L belong to different multiplets. Exp: Currents are conserved to high accuracy! SU(2)xU(1) works beautifully BUT HOW DO WE GET THE MASSES? 21

On the fate of symmetries Symmetries can be exact: U(1) em, SU(3) QCD, B-L Or they can be explicitly broken by (small) terms: SU(2) isospin is broken by m u,d and by QED Still useful. They can broken by quantum corrections, have anomalies: eg scale invariance in massless QFT is anomalous, a new scale appears. They can be Spontaneously broken: the ground state is NOT symmetric, although the interactions respect the symmetry. Two possibilities: a scalar field acquires a vev, or dynamical breaking (chiral SU(2) R xsu(2) L of strong int) It is quite common in nature that the lowest energy state is not symmetric: ex ferromagnet below the Curie temperature 22

A miracolous cancellation Axial anomaly: impossible to regularize a field th in a way that preserves both axial and vector conservation Ward id. (gauge invariance) spoiled by loops (triangle) J Aµ = ψ γ µ γ 5 ψ; µ J Aµ = ε µνρσ F µν F ρσ /4π 2 +mass terms Non-abelian case: anomaly Tr({T a,t b }T c ) T i =τ i,y SU(2) not anomalous, yet ex Tr({τ a,τ b }Y) = 2δ ab Tr Y L = 2δ ab [n q x3x2x1/3 + n l x2x(-1)] n q -n l and similarly for all other gauge currents of SM. Why? hint of GUTs? SM has also accidental global symmetries, rephasing invariance that is a consequence of the assumed gauge symmetry and renormalizability: B, L e,l µ,l τ. B and L are anomalous, B-L is not. B(µ 3e)<10-12 but cosmological consequences 23

Hidden symmetry we need a mechanism of Spontaneous Symmetry Breaking (SSB) m 0 <0 X 0> 0 (v.e.v.) X could be a scalar field or condensate, should be SU(2) doublet, vev~250gev Langrangian symmetric, currents conserved, spectrum and vacuum not invariant. Goldstone theorem: as many massless bosons as the broken continuous symmetries: if Q i 0> 0 but [H,Q i ]=0, Q i 0> is degenerate with 0>. Goldstone th is EVADED in gauge theories due to longitudinal vector bosons. SSB does not spoil renormalizability (soft breaking) The Higgs mechanism realizes SSB in SM in the most economical way: X is single complex doublet of fundamental scalars, predicting the existence of a new particle, the HIGGS BOSON. At the same time massive vector bosons are quantized without spoiling renormalizability and unitarity. 24

Hidden (discrete) symmetry φ -φ L= ½ ( µ φ) 2 -½ m 2 φ 2 -¼ λφ 4 L = ½ ( µ φ) 2 + ½ µ 2 φ 2 -¼ λφ 4 Potential minimized by φ=0 φ=± µ/λ ½ =v <0 φ 0>=v excitations around vacuum: φ = v + φ symmetry is no longer manifest L = ½ ( µ φ ) 2 - m 2 φ 2 -λ v φ 3 -¼ λφ 4 25

Abelian Higgs mechanism L= ¼F µν F µν +(D µ φ) D µ φ -V(φ) U(1) invariant with D µ = µ -i e A µ and V(φ)= m 2 φ 2 +λ φ 4 (most general renorm.) If m 2 <0, λ>0, we have an infinite number of degenerate vacua for φ 2 = -m 2 /2λ ½v 2 connected by gauge transf. 26

Symmetry becomes apparent only at high energies 27

Abelian Higgs mechanism (II) Decompose φ(x)= [v+h(x)+i G(x)]/ 2 H,G real In L the terms H, G 2 vanish ie G is a Goldstone boson. (D µ φ) D µ φ= ½ e 2 v 2 A µ A µ +... VB has acquired a mass M = e v After proper gauge fixing ( µ A µ +e v ξ G) 2 /2ξ the A propagator becomes good UV behaviour. In the limit ξ (unitary gauge) the Goldstone boson decouples and one recovers the usual propagator The number of dof is constant: we had a complex φ, now we have H and the longitudinal polarization of A 28

Higgs mechanism in the SM we want <0 φ 0>=v 0 φ in red. repr. of SU(2)xU(1) but must preserve U(1) em : SSB concerns 3 generators V(φ)= m 2 φ 2 +λ φ 4 minimized by φ 0 2 = -m 2 /2λ v 2 /2 Simplest solution: φ doublet U(1) em inv. imposes Y=1 29

Yukawa couplings φ can couple to matter fields as well. Most general gauge inv and renorm form SM accomodates flavor: there is no theory of flavor! masses Yukawas only for 1 doublet Leptons (no ν mass): same but no LFV, BR(µ eγ)<10-11 30