Electromagnetic Probes in Ultrarelativistic Heavy-Ion Collisions

Similar documents
The Dilepton Probe from SIS to RHIC

The Dilepton Probe from SIS to RHIC

Dileptons in NN and AA collisions

Theoretical Review of Dileptons from Heavy Ion Collisions

Medium Modifications of Hadrons and Electromagnetic Probe

Dileptons with a coarse-grained transport approach

Dileptons in heavy-ion-collisions

Electromagnetic probes: Messengers from the hot and dense fireball

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Hadrons in hot and dense matter IV

A Theoretical View on Dilepton Production

Dilepton Production from Coarse-grained Transport Dynamics

Outline: Introduction

Thermal EM Radiation in Heavy-Ion Collisions

Low mass dileptons from Pb + Au collisions at 158 A GeV

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics

Heavy-Quark Transport in the QGP

Thermal dileptons from coarse-grained transport as probes of hot and dense QCD matter

Thermal dileptons as fireball probes at SIS energies

A fresh look at the radiation from the QGP

Measurements of the electron-positron continuum in ALICE

arxiv: v3 [nucl-ex] 22 Feb 2010

Penetrating probe of the hot, dense medium

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma

Lepton and Charm Measurements in the First Two Years of RHIC: An Experimental Overview

Heavy Quarks in Heavy-Ion Collisions

Some aspects of dilepton production in HIC

Thermal Electromagnetic Radiation in Heavy-Ion Collisions

Thermal Dileptons as Fireball Thermometer and Chronometer

Heavy flavor with

Exploring dense matter at FAIR: The CBM Experiment

Phenomenology of Heavy-Ion Collisions

Photon Production in a Hadronic Transport Approach

The QGP phase in relativistic heavy-ion collisions

MFT: Motivations and Expectations

Di-electron production at ultra-relativistic energies

Nuclear and Particle Physics 4a Electromagnetic Probes

Transport Coefficients of Hadron Matter at Finite Temperature

Heavy Ion Physics Lecture 3: Particle Production

Heavy-Quark Transport in the QGP

Hadronic equation of state and relativistic heavy-ion collisions

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

arxiv: v1 [nucl-ex] 12 May 2008

Measurements of the dilepton continuum in ALICE. Christoph Baumann Resonance Workshop, Austin

Neutral meson and direct photon measurement in pp and Pb Pb collisions at midrapidity with the ALICE experiment at the LHC

Research Article Dilepton Spectroscopy of QCD Matter at Collider Energies

HOT HADRONIC MATTER. Hampton University and Jefferson Lab

Project B.5: Hadrons in Nuclear Matter

The direct photon puzzle

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Overview* of experimental results in heavy ion collisions

MULTI-CHANNEL MEASUREMENTS OF LIGHT VECTOR MESONS AT PHENIX

Direct Photon Results from ALICE and the Direct Photon Puzzle

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

The chiral anomaly and the eta-prime in vacuum and at low temperatures

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

First results with heavy-ion collisions at the LHC with ALICE

Parton dynamics in heavy-ion collisions from FAIR to LHC

Review of photon physics results at Quark Matter 2012

Jet Physics with ALICE

Bottomonia physics at RHIC and LHC energies

arxiv:nucl-ex/ v2 16 Jan 2007

The Quark-Gluon Plasma and the ALICE Experiment

Hadronization by coalescence plus fragmentation from RHIC to LHC

Measurement of virtual photons radiated from Au+Au collisions at E beam = 1.23 AGeV in HADES

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

Photoabsorption and Photoproduction on Nuclei in the Resonance Region

Outline: Introduction and Motivation

NA60 results on thermal dimuons

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Nonequilibrium photon production by classical color fields

Heavy-flavour meson production at RHIC

Strangeness production and nuclear modification at LHC energies

Strangeness Production at SIS: Au+Au at 1.23A GeV with HADES & Microscopic Description by Transport Models

arxiv:nucl-ex/ v1 21 Dec 2004

arxiv:nucl-th/ v1 9 Dec 1998

Heavy Ions at the LHC: First Results

Multiplicity distributions for jet parton showers in the medium

Feasibility of a cross-section measurement for J/ψ->ee with the ATLAS detector

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Dynamical equilibration of stronglyinteracting

The Secret of Mass. Can we Evaporate the Vacuum at RHIC?

Heavy-Quark Kinetics in the Quark-Gluon Plasma

Heavy Flavor Results from STAR

arxiv: v1 [nucl-ex] 2 Jul 2018

The History and Lessons of the Hagedorn Model

Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

Low Mass Dimuon Production in Proton-Nucleus Collisions at 400 GeV/c with the NA60 Experiment. Antonio Uras for the NA60 Collaboration

Electroweak Physics at the Tevatron

Experimental Summary 40 th Rencontres de Moriond QCD and High Energy Hadronic Interactions. Heidi Schellman Northwestern University

Measurements of dilepton continuum at the PHENIX experiment at RHIC. s NN =200 GeV Au+Au and p+p collisions.

Magnetic field in heavy-ion collision and anisotropy of photon production

QCD and High Energy Hadronic Interactions. Northwestern University. Heidi Schellman. Experimental Summary. 40 th Rencontres de Moriond

Beam energy scan using a viscous hydro+cascade model

Beam energy scan using a viscous hydro+cascade model: an update

Low-mass dileptons: A thermometer for the hottest stuff in the universe

Shingo Sakai Univ. of California, Los Angeles

Transcription:

Electromagnetic Probes in Ultrarelativistic Heavy-Ion Collisions Hendrik van Hees Justus-Liebig Universität Gießen September 1, 2009 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 1 / 27

Outline 1 Electromagnetic probes in heavy-ion collisions Vector mesons and electromagnetic probes Sources of dileptons 2 Comparison data (SPS+RHIC) Invariant-mass spectra m T spectra and slope analysis 3 Conclusions and Outlook Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 2 / 27

Electromagnetic probes in heavy-ion collisions γ, l ± : no strong interactions reflect whole history of collision: from pre-equilibrium phase from thermalized medium and hot hadron gas from VM decays after thermal freezeout π,... ρ/ω γ e dn/(dy dm) π 0, η Dalitz decays ρ/ω Φ DD J/ Ψ ψ Drell Yan Low Intermediate High Mass Region > 10 fm > 1 fm < 0.1 fm e + 0 1 2 3 4 5 M [GeV/c] Fig. by A. Drees γ Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 3 / 27

Vector Mesons and electromagnetic Probes q 0 photon and dilepton thermal emission rates given by same electromagnetic-current-correlation function (J µ = f Q f ψ f γ µ ψ f ) [L. McLerran, T. Toimela 85, H. A. Weldon 90, C. Gale, J.I. Kapusta 91] Π < µν(q) = d 4 x exp(iq x) J µ (0)J ν (x) T = 2f B (q 0 ) Im Π (ret) µν (q) α 2π 2 gµν Im Π (ret) µν (q) f B(q 0 ) q0 = q dn γ d 4 xd 3 q = dn e + e d 4 xd 4 q = α 2 gµν 3q 2 Im Π(ret) π3 µν (q) f B (q 0 ) q 2 =M 2 e + e to lowest order in α: e 2 Π µν Σ (γ) µν vector-meson dominance model: Σ γ µν = G ρ derivable from partition sum Z(V, T, µ, Φ)! Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 4 / 27

Hadronic many-body theory HMBT for vector mesons [Ko et al, Chanfray et al, Herrmann et al, Rapp et al,...] ππ interactions and baryonic excitations ρ π B *, a 1, K 1,... ρ ρ ρ π N, K, π,... +corresponding vertex corrections gauge invariance Baryon (resonances) important, even at RHIC with low net baryon density n B n B reason: n B +n B relevant (CP inv. of strong interactions) Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 5 / 27

In-medium spectral functions and baryon effects [R. Rapp, J. Wambach 99] baryon effects important large contribution to broadening of the peak responsible for most of the strength at small M Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 6 / 27

Dilepton rates: Hadron gas in-medium hadron gas matches with similar results also for γ rates quark-hadron duality!? indirect evidence for chiral-symmetry restoration Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 7 / 27

Sources of dilepton emission in heavy-ion collisions 1 initial hard processes: Drell Yan 2 core emission from thermal source [McLerran, Toimela 1985] 1 dn (thermal) = d 4 dn (thermal) x dy Mdϕ q T dmdq T d 4 xd 4 Acc(M, q T, y) q 3 corona emission from primordial mesons (jet-quenching) 4 after thermal freeze-out emission from freeze-out mesons [Cooper, Frye 1975] d N (fo) 3 q = q 0 q µ dσ µ f B (u µ q µ /T ) Γ meson l + l Acc Γ meson additional factor γ = q 0 /M compared to thermal emission physical reason thermal source rate τ med Γ meson l + l γ decay of mesons after fo: rate Γ meson l + l Γ meson Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 8 / 27

Intermediate masses: hadronic 4π contributions e.m. current-current correlator τ 2nπ -Im Π V,A /(π M 2 ) 0.08 0.06 0.04 V [τ 2n π ν τ ] V [τ 2 π ν τ ] ρ + cont. 2π (ρ) 4π (fit) -Im Π V,A /(π M 2 ) 0.04 0.03 0.02 A [τ (2n+1) π ν τ ] A [τ 3 π ν τ ] a 1 + cont. 3π (a 1 ) 5π (fit) 0.02 0.01 0 1.6 1.8 2 M 2 (GeV 2 ) 0 1.6 1.8 2 M 2 (GeV 2 ) 4π contributions : π + ω, a 1 µ + + µ leading-order virial expansion for four-pion piece additional strength through chiral mixing Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 9 / 27

Radiation from thermal sources: Meson t-channel exchange motivation: q T spectra too soft compared to data thermal contributions not included in models so far l π ρ γ l + ω ρ π also for π, a 1 Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 10 / 27

Excess spectra dn µµ /dm (counts) 2000 1500 1000 500 Fireball with standard EoS-A (T c = T chem = 175 MeV) overall normalization fireball lifetime relative normalization of thermal radiation fixed by rates rates integrated over time, volume, q including acceptance semicentral In-In all q T T c =T ch =175 MeV +DD FO + sum dn µµ /dm (counts) 1200 1000 800 600 400 200 central In-In all q T T c =T ch =175 MeV +DD FO+ sum 0 good description of data 0 Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 11 / 27

Excess spectra: IMR and multi-pion contributions dn µµ /dm (counts) 1200 1000 800 600 400 semicentral In-In all q T DD sum () 4π vac sum (4π vac) T c =T ch =175 MeV 200 0 1 1.2 1.4 4π contributions (π + ω, a 1 µ + + µ ) slightly enhanced by VA mixing Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 12 / 27

CERES/NA45 dielectron spectra (dn ee /dm) / <N ch > [100 MeV/c 2 ] -1 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 good agreement also for dielectron spectra in 158 GeV Pb-Au allows further check of low-mass tail from baryon effects down to M 2m e 10 6 1.8 Pb(158 AGeV)+Au (7% central) <N ch >=335 CERES 00 +ω+φ (no bar ρ) p t >0.2GeV 2.1<η<2.65 Θ ee >35mrad 0 0.2 0.4 0.6 0.8 1 1.2 M ee [GeV] (d 2 N ee /dηdm) / (dn ch /dη) [100MeV] -1 10-5 10-6 10-7 35% Central Pb(158AGeV)+Au <N ch >=250 Cocktail CERES 95+ 96 free ρ +ω+φ++4π p t >0.2GeV 2.1<η<2.65 Θ ee >35mrad 4π 10-8 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 M ee [GeV] Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 13 / 27

Excess spectra: acceptance-corrected mass spectra ZD: [K. Dusling, D. Teaney, I. Zahed 2007], RR: [J. Ruppert, T. Renk et al 2008], RH: [HvH, R. Rapp 2008] Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 14 / 27

Importance of baryon effects Baryonic interactions important! in-medium broadening low-mass tail! (1/N ch ) d 2 N µµ /(dm dη) (20 MeV) -1 10-5 10-6 10-7 10-8 10-9 T c =T ch =175 MeV, a t =0.1 c 2 /fm all q T FO ρ φ ω ω-t ex +ω-t ex (1/N ch ) d 2 N µµ /(dm dη) (20 MeV) -1 10-5 10-6 10-7 10-8 10-9 T c =T ch =175 MeV, a t =0.1 c 2 /fm all q T FO ρ φ ω ω-t ex +ω-t ex Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 15 / 27

Sensitivity to T c and hadro-chemistry recent lattice QCD: T c 190-200 MeV or T c 150-160 MeV? thermal-model fits to hadron ratios: T chem 150-160 MeV T (GeV) 0.2 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 t fo =6.7 fm/c EoS-A EoS-B EoS-C 0 1 2 3 4 5 6 7 t (fm/c) µ π (GeV) 0.1 0.08 0.06 0.04 0.02 EoS-A EoS-B EoS-C t 0 fo =6.7 fm/c 0 1 2 3 4 5 6 7 t (fm/c) EoS-A: T c = T chem = 175 MeV EoS-B: T c = T chem = 160 MeV EoS-C: T c = 190 MeV, T chem = 160 MeV T c T T chem : hadron gas in chemical equilibrium keep fireball parameters the same (including life time) Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 16 / 27

EoS-B dn µµ /dm (counts) 2000 1500 1000 semicentral In-In all q T T c =T ch =160 MeV +DD FO + sum dn µµ /dm (counts) 1000 800 600 400 semicentral In-In q T <0.5 GeV T c =T ch =160 MeV +DD FO + sum dn µµ /dm (counts) 1000 800 600 400 semicentral In-In q T >1.0 GeV T c =T ch =160 MeV +DD FO + sum 500 200 200 1/q T dn µµ /(dq T dy) (counts) 10 8 10 7 10 6 10 5 10 4 0 semicentral In-In 0.4 GeV<M<0.6 GeV incl. FO+ 1/q T dn µµ /(dq T dy) (counts) 10 8 10 7 10 6 10 5 10 4 0 semicentral In-In 0.6 GeV<M<0.9 GeV incl. FO ρ 1/q T dn µµ /(dq T dy) (counts) 10 7 10 6 10 5 10 4 10 3 0 semicentral In-In 1.0 GeV<M<1.4 GeV incl. FO ρ T c =T ch =160 MeV 10 3 0 0.5 1 1.5 2 2.5 m T - T c =T ch =160 MeV 10 3 0 0.5 1 1.5 2 2.5 m T - T c =T ch =160 MeV 10 2 0 0.5 1 1.5 2 m T - mass spectra comparable to EoS-A slight enhancement of fireball lifetime in IMR > multi-pion contribution higher hadronic temperatures slightly harder q T spectra not enough to resolve discrepancy with data Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 17 / 27

EoS-C dn µµ /dm (counts) 2000 1500 1000 semicentral In-In all q T T c =190 MeV T ch =160 MeV +DD FO + sum dn µµ /dm (counts) 1000 800 600 400 semicentral In-In q T <0.5 GeV T c =190 MeV T ch =160 MeV +DD FO + sum dn µµ /dm (counts) 1000 800 600 400 semicentral In-In q T >1.0 GeV T c =190 MeV T ch =160 MeV +DD FO + sum 500 200 200 1/q T dn µµ /(dq T dy) (counts) 10 8 10 7 10 6 10 5 10 4 10 3 0 semicentral In-In 0.4 GeV<M<0.6 GeV T c =190 MeV, T ch =160 MeV 0 0.5 1 1.5 2 2.5 m T - incl. FO+ 1/q T dn µµ /(dq T dy) (counts) 10 8 10 7 10 6 10 5 10 4 10 3 0 T c =190 Mev T ch =160 MeV semicentral In-In 0.6 GeV<M<0.9 GeV 0 0.5 1 1.5 2 2.5 m T - incl. FO ρ 1/q T dn µµ /(dq T dy) (counts) 10 7 10 6 10 5 10 4 10 3 10 2 0 semicentral In-In 1.0 GeV<M<1.4 GeV T c =190 MeV, T ch =160 MeV 0 0.5 1 1.5 2 m T - incl. FO ρ mass spectra comparable to EoS-A slight reduction of fireball lifetime in IMR multi-pion contribution higher hadronic temperatures + high-density hadronic phase harder q T spectra better agreement with data Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 18 / 27

standard fireball acceleration: too soft q T spectra lower T c in EoS-B and EoS-C helps (higher hadronic temperatures) NB: here, Drell Yan contribution taken out Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 19 / 27 Inverse-slope analysis to extract T eff fit to 1 dn = 1 q T dq T m T ( dn = C exp m ) T dm T T eff fit of theoretical q T spectra: 1 GeV < q T < 1.8 GeV 300 300 250 250 T eff (MeV) 200 T eff (MeV) 200 EoS-A 150 EoS-B NA 60 NA 60 LMR NA 60 IMR no 100 EoS-A 150 EoS-C NA 60 NA 60 LMR NA 60 IMR no 100

Inverse-slope analysis 300 300 250 250 T eff (MeV) 200 T eff (MeV) 200 EoS-B 150 EoS-B, a =0.1c 2 /fm NA 60 NA 60 LMR NA 60 IMR no 100 EoS-C 150 EoS-C, a =0.1c 2 /fm NA 60 NA 60 LMR NA 60 IMR no 100 enhance fireball acceleration to a = 0.1c 2 /fm effective at all stages of fireball evolution agreement in IMR not spoiled dominated from earlier stages EoS-B harder relative contribution of harder freezeout ρ decays vs. thermal ρ s larger Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 20 / 27

Inverse-slope analysis 300 300 250 250 T eff (MeV) 200 EoS-C, a =0.1c 2 /fm EoS-C, a =0.1c 2 /fm + ω-t-ex (med ρ) 150 EoS-C, a =0.1c 2 /fm + ω-t-ex (vac ρ) NA 60 NA 60 LMR NA 60 IMR no 100 T eff (MeV) 200 EoS-C, a =0.1c 2 /fm 150 EoS-C, a =0.1c 2 /fm + NA 60 NA 60 LMR NA 60 IMR no 100 sensitivity to contributions from meson t-channel exchange hardens low-mass region using vacuum ρ in t-channel contribution: enhances slope in ρ region sensitivity to Drell-Yan contribution for IMR: describes effect seen in data (open vs. solid square data point) in LMR: too high around muon threshold due to uncertainties in extrapolation to low M?!? Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 21 / 27

IMR: vs. multi-pion radiation dn µµ /dm (counts) 200 150 100 semicentral In-In all p T (EoS-A) (EoS-B) (EoS-C) 4π (EoS-A) 4π (EoS-B) 4π (EoS-C) 50 0 0.9 1 1.1 1.2 1.3 1.4 EoS-B: dominates over multi-pion radiation opposite in EoS-A and EoS-C multi-pion radiation dominantly from high-density hadronic phase reason :dn ll /dmdt Im Π em (M, T ) exp( M/T ) T 5.5 radiation maximal for T = T max = M/5.5 hadronic and partonic radiation dual for T T c compatible with chiral-symmetry restoration! Hendrik inconclusive van Hees (JLU Gießen) whether hadronic Em Probes or inpartonic URHICs emission inseptember IMR! 1, 2009 22 / 27

Hadron spectra analysis of cocktail : hadron-m T spectra comparison to fireball evolution sequential freeze-out due to different coupling strength (1/m T ) dn/dm T (a.u.) 10 6 10 5 prim+fo fo prim ρ 10 4 ρ (semicentral) (0.6 GeV<M<0.9 GeV) T c =T ch =175 MeV, a T =0.1 c 2 /fm 10 3 0 0.5 1 1.5 2 2.5 m T - Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 23 / 27

Hadron spectra analysis of cocktail : hadron-m T spectra comparison to fireball evolution sequential freeze-out due to different coupling strength (1/m T ) dn/dm T (a.u.) 10 7 10 6 10 5 prim+fo fo prim ω 10 4 ω (semicentral) T c =T ch =175 MeV a T =0.1 c 2 /fm, t fo =5 fm 10 3 0 0.5 1 1.5 2 2.5 m T - (1/m T ) dn/dm T (a.u.) 10 7 10 6 10 5 prim+fo fo prim φ 10 4 φ (semicentral) T c =T ch =175 MeV a T =0.1 c 2 /fm, t fo =4 fm 10 3 0 0.5 1 1.5 2 2.5 m T - Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 23 / 27

M spectra (in p T slices) EoS-A: T c = T ch = 175 MeV transverse acceleration: a = 0.1c 2 /fm (1/N ch ) d 2 N µµ /(dm dη) (20 MeV) -1 10-5 10-6 10-7 10-8 10-9 T c =T ch =175 MeV, a t =0.1 c 2 /fm all q T FO ρ φ ω ω-t ex +ω-t ex (1/N ch ) d 2 N µµ /(dm dη) (20 MeV) -1 10-5 10-6 10-7 10-8 10-9 T c =T ch =175 MeV, a t =0.1 c 2 /fm 0.2 GeV<q t <2.4 GeV FO ρ φ ω ω-t ex +ω-t ex norm corrected by 3% due to centrality correction (min-bias data: N ch = 120, calculation N ch = 140) Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 24 / 27

M spectra (in p T slices) EoS-A: T c = T ch = 175 MeV transverse acceleration: a = 0.1c 2 /fm (1/N ch ) d 2 N µµ /(dm dη) (20 MeV) -1 10-5 10-6 10-7 10-8 10-9 T c =T ch =175 MeV, a t =0.1 c 2 /fm 0<q t <0.2 GeV FO ρ φ ω ω-t ex +ω-t ex (1/N ch ) d 2 N µµ /(dm dη) (20 MeV) -1 10-5 10-6 10-7 10-8 10-9 T c =T ch =175 MeV, a t =0.1 c 2 /fm 0.2 GeV<q t <0.4 GeV FO ρ φ ω ω-t ex +ω-t ex norm corrected by 3% due to centrality correction (min-bias data: N ch = 120, calculation N ch = 140) Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 24 / 27

M spectra (in p T slices) EoS-A: T c = T ch = 175 MeV transverse acceleration: a = 0.1c 2 /fm (1/N ch ) d 2 N µµ /(dm dη) (20 MeV) -1 10-5 10-6 10-7 10-8 10-9 T c =T ch =175 MeV, a t =0.1 c 2 /fm 0.4 GeV<q t <0.6 GeV FO ρ φ ω ω-t ex +ω-t ex (1/N ch ) d 2 N µµ /(dm dη) (20 MeV) -1 10-5 10-6 10-7 10-8 10-9 T c =T ch =175 MeV, a t =0.1 c 2 /fm 0.6 GeV<q t <0.8 GeV FO ρ φ ω ω-t ex +ω-t ex norm corrected by 3% due to centrality correction (min-bias data: N ch = 120, calculation N ch = 140) Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 24 / 27

M spectra (in p T slices) EoS-A: T c = T ch = 175 MeV transverse acceleration: a = 0.1c 2 /fm (1/N ch ) d 2 N µµ /(dm dη) (20 MeV) -1 10-5 10-6 10-7 10-8 10-9 T c =T ch =175 MeV, a t =0.1 c 2 /fm 0.8 GeV<q t <1.0 GeV FO ρ φ ω ω-t ex +ω-t ex (1/N ch ) d 2 N µµ /(dm dη) (20 MeV) -1 10-5 10-6 10-7 10-8 10-9 T c =T ch =175 MeV, a t =0.1 c 2 /fm 1.0 GeV<q t <1.2 GeV FO ρ φ ω ω-t ex +ω-t ex norm corrected by 3% due to centrality correction (min-bias data: N ch = 120, calculation N ch = 140) Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 24 / 27

M spectra (in p T slices) EoS-A: T c = T ch = 175 MeV transverse acceleration: a = 0.1c 2 /fm (1/N ch ) d 2 N µµ /(dm dη) (20 MeV) -1 10-5 10-6 10-7 10-8 10-9 T c =T ch =175 MeV, a t =0.1 c 2 /fm 2.0 GeV<q t <2.2 GeV FO ρ φ ω ω-t ex +ω-t ex (1/N ch ) d 2 N µµ /(dm dη) (20 MeV) -1 10-5 10-6 10-7 10-8 10-9 T c =T ch =175 MeV, a t =0.1 c 2 /fm 2.2 GeV<q t <2.4 GeV FO ρ φ ω ω-t ex +ω-t ex norm corrected by 3% due to centrality correction (min-bias data: N ch = 120, calculation N ch = 140) Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 24 / 27

Dileptons@RHIC: New Puzzle? huge enhancement in the LMR unexplained yet! for details see previous talk! /GeV) IN PHENIX ACCEPTANCE 2 (c dn/dm ee 10-1 min. bias Au+Au s = 200 GeV NN DATA cc ee (PYTHIA) R.Rapp & H.vanHees y < 0.35-2 10-3 10-4 10 e p T > 0.2 GeV/c cc ee (random correlation) cocktail sum w/ ρ vacuum sum w/ ρ broadening sum/ ρ dropping) partonic yield (PY) /GeV) IN PHENIX ACCEPTANCE 2 (c dn/dm ee 10-1 min. bias Au+Au s = 200 GeV NN DATA cc ee (PYTHIA) y < 0.35 HSD e p > 0.2 GeV/c cc ee (random correlation) T cocktail -2 10 sum w/ ρ broadening -3 10-4 10 sum w/ ρ broad. + drop. -5 10-5 10 0 0.2 0.4 0.6 0.8 1 1.2 2 m ee (GeV/c ) model: Rapp, HvH [A. Adare et al (PHENIX), arxiv:0912.0244 [nucl-ex]] 0 0.2 0.4 0.6 0.8 1 1.2 2 m ee (GeV/c ) model: HSD Bratkovskaya, Cassing [A. Adare et al (PHENIX), arxiv:0912.0244 [nucl-ex]] Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 25 / 27

Conclusions and Outlook dilepton spectra in-medium em. current correlator model for dilepton sources radiation from thermal sources:, ρ, ω, φ ρ-decay after thermal freeze-out decays of non-thermalized primordial ρ s Drell-Yan annihilation, correlated D D decays invariant-mass spectra and medium effects excess yield dominated by radiation from thermal sources baryons essential for in-medium properties of vector mesons melting ρ with little mass shift robust signal! (independent of T c ) IMR well described by scenarios with radiation dominated either by or multi-pion processes (depending on EoS) Reason: mostly from thermal radiation around 160 MeV T 190 MeV parton-hadron duality of rates compatible with chiral-symmetry restoration! dimuons in In-In (), Pb-Au (CERES/NA45), γ in Pb-Pb (WA98) recent review: [R. Rapp, J. Wambach, HvH, Landolt-Brnstein, 1-23A, arxiv: 0901.3289 [hep-ph]] Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 26 / 27

Conclusions and Outlook fireball/freeze-out dynamics m T spectra and effective slopes non-thermal sources important for q T 1 GeV lower T c higher hadronic temperatures harder q T spectra to describe measured effective slopes a = 0.085c 2 /fm 0.1c 2 /fm off-equilibrium effects (viscous hydro)? Further developments understand recent PHENIX results (large dilepton excess in LMR) understand DLS puzzle (exp. confirmed by HADES) N N (np!) bremsstrahlung! vector- should be complemented with axial-vector-spectral functions (a 1 as chiral partner of ρ) constrained with lqcd via in-medium Weinberg chiral sum rules direct connection to chiral phase transition! Hendrik van Hees (JLU Gießen) Em Probes in URHICs September 1, 2009 27 / 27