Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions

Similar documents
Hydrodynamic response to initial state fluctuations

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions

arxiv: v1 [nucl-th] 2 Mar 2015

Latest results from the EbyE NLO EKRT model. Eskola, K. J

Initial state anisotropies in ultrarelativistic heavy-ion collisions from the Monte Carlo Glauber model

arxiv: v2 [nucl-th] 24 Sep 2012

Relativistic hydrodynamics for heavy ion collisions can a macroscopic approach be applied to a microscopic system?

Relativistic hydrodynamics for heavy ion collisions can a macroscopic approach be applied to a microscopic system? Dirk H. Rischke

MIXED HARMONIC FLOW CORRELATIONS

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS. inziale nel plasma creato nelle collisioni ad energie ultra-relativistiche

arxiv: v1 [nucl-ex] 6 Dec 2011

Constraining the bulk viscosity of QCD

arxiv: v1 [nucl-th] 9 Jun 2008

Uncertainties in the underlying e-by-e viscous fluid simulation

Collective and non-flow correlations in event-by-event hydrodynamics

Space-time evolution of the Quark Gluon Plasma. Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg

Beam energy scan using a viscous hydro+cascade model: an update

Global and Collective Dynamics at PHENIX

The Core Corona Model

Bulk matter formed in Pb Pb collisions at the LHC

Monte Carlo Non-Linear Flow modes studies with AMPT

arxiv: v1 [nucl-ex] 11 Jul 2011

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

arxiv: v1 [nucl-th] 28 Nov 2017

Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions

Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering. Hannah Petersen May 11, 2018, ECT*, Trento, Italy

DEPARTMENT OF PHYSICS UNIVERSITY OF JYVÄSKYLÄ RESEARCH REPORT No. 4/2011

Collision Geometry and Flow in Uranium+Uranium Collisions

Soft Physics in Relativistic Heavy Ion Collisions

Hybrid Model of Heavy-Ion Collisions at BES Energies with Dynamical Sources

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Collective Dynamics of the p+pb Collisions

Review of collective flow at RHIC and LHC

Flow Harmonic Probability Distribution in Heavy Ion Collision

Beam energy scan using a viscous hydro+cascade model

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach

arxiv: v2 [nucl-ex] 8 Sep 2016

Current Status of QGP hydro + hadron cascade approach

The unreasonable effectiveness of hydrodynamics in heavy ion collisions

Selected Topics in the Theory of Heavy Ion Collisions Lecture 1

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Event geometrical anisotropy and fluctuation viewed by HBT interferometry

arxiv: v2 [nucl-th] 22 Apr 2015

Triangular flow in hydrodynamics and transport theory

Event by Event Flow in ATLAS and CMS

arxiv: v2 [nucl-ex] 15 Jun 2011

Resonances in Hadronic Transport

arxiv: v3 [nucl-th] 17 Jun 2015

Equilibration and decoupling of a relativistic gas in a Friedmann-Robertson-Walker spacetime

Introduction to Relativistic Hydrodynamics

arxiv: v1 [nucl-th] 11 Aug 2013

Constraining the QCD equation of state in hadron colliders

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA

arxiv: v1 [nucl-th] 31 Oct 2012

Anisotropic Flow: from RHIC to the LHC

Fluid dynamics: theory and applications in heavy-ion physics

Flow Results and Hints of Incomplete Thermalization

Ideal Hydrodynamics. Pasi Huovinen. JET Summer School. J. W. Goethe Universität. June 16, 2012, McGill University, Montreal, Canada

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

Investigation of Mach cones and the corresponding two-particle correlations in a microscopic transport model

Lambda-Lambda correlation from an integrated dynamical model

First results with heavy-ion collisions at the LHC with ALICE

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS

Low Momentum Direct Photons in Au+Au collisions at 39 GeV and 62.4 GeV measured by the PHENIX Experiment at RHIC

Hints of incomplete thermalization in RHIC data

arxiv: v2 [nucl-th] 11 Feb 2013

J/Ψ-suppression in the hadron resonance gas

Overview of anisotropic flow measurements from ALICE

Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State

Jet and bulk observables within a partonic transport approach

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

arxiv: v1 [nucl-th] 4 Feb 2014

In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T

Throwing triangles against a wall

Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC and LHC

arxiv: v1 [nucl-th] 11 Sep 2013

Event anisotropy at RHIC

Dihadron correlations from AMPT

Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle?

Modeling Quark Gluon Plasma Using CHIMERA

Selected Topics in the Theory of Heavy Ion Collisions Lecture 1

Lectures on hydrodynamics - Part I: Ideal (Euler) hydrodynamics

Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au+Au collisions at PHENIX

arxiv: v1 [nucl-ex] 10 Feb 2012

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model

Outline: Introduction and Motivation

Ultra-Relativistic Heavy Ion Collision Results

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Lattice QCD based equation of state at finite baryon density

Divergence of the gradient expansion and the applicability of fluid dynamics Gabriel S. Denicol (IF-UFF)

A Senior Honors Thesis

Flow analysis in CBM experiment at FAIR

Phenomenology of Heavy-Ion Collisions

(Some) Bulk Properties at RHIC

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Energy scan programs in HIC

Some aspects of dilepton production in HIC

Soft physics results from the PHENIX experiment

Transcription:

Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions Hannu Holopainen Frankfurt Institute for Advanced Studies in collaboration with G. S. Denicol, P. Huovinen, H. Niemi and D. H. Rischke VIII Workshop on Particle Correlations and Femtoscopy Frankfurt am Main 12.9.2012 WPCF 2012 12.9.2012 H. Holopainen (FIAS) 1/21

Event-by-event hydrodynamics Why are we interested in ebye hydrodynamics? We can get correct v 2 in central collisions. Triangular flow! Fluctuations of v n. Higher harmonics and correlation between different harmonics. v 2 0.1 (a) 0-5% charged v2{ep} v2{pp} v2{rp} v2{smooth} 0.0 0.0 0.5 1.0 1.5 p T [GeV] HH, Niemi, Eskola PRC83 (2011) 034901 WPCF 2012 12.9.2012 H. Holopainen (FIAS) 2/21

Event-by-event hydrodynamics Viscous ebye reproduces the data pretty well. v n 0.15 0.1 0.05 v 2 v 3 v 4 v 5 PHENIX v 2 PHENIX v 3 PHENIX v 4 η/s=0.08 0-10% 0.3 5 0.15 0.1 v 2 20-30% v 3 20-30% v 4 20-30% v 5 20-30% PHENIX v 2 PHENIX v 3 PHENIX v 4 η/s=0.08 0.05 0 0 0.5 1 1.5 2 2.5 3 p T [GeV] 0 0 0.5 1 1.5 2 2.5 3 p T [GeV] Schenke, Jeon, Gale, Phys. Rev. C85, 024901 (2012) If ebye hydro really works, one can apply hydro in each event we should be able to reproduce the v n distributions! WPCF 2012 12.9.2012 H. Holopainen (FIAS) 3/21

Hydrodynamical model WPCF 2012 12.9.2012 H. Holopainen (FIAS) 4/21

Our model Hydrodynamical model previously employed in Niemi, Denicol, Huovinen, Molnar, Rischke, Phys. Rev. Lett. 106, 212302 (2011) Niemi, Denicol, Huovinen, Molnar, Rischke, Phys. Rev. C86, 014909 (2012) 2+1D viscous hydrodynamics, Bjorken in beam direction No net-baryon number EoS: s95p-pce-v1 Huovinen, Petreczky, NPA837 (2010) 26-53 Chemical freeze-out T c = 150 MeV Kinetical decoupling T f = 100 MeV Hadrons only up to mass 1.1 GeV, 2- and 3-particle decays Initial state from Monte Carlo Glauber Velocities and shear-stress tensor initialized to zero WPCF 2012 12.9.2012 H. Holopainen (FIAS) 5/21

Initial states Nucleons are distributed into nuclei using Woods-Saxon. No finite size or NN-correlation effects included. Random impact parameter from dn/db b. Nucleons collide if (x i x j ) 2 +(y i y j ) 2 σ NN π σ NN = 42 mb for RHIC. 10 8 6 4 2 y [fm] -10-8 -6-4 -2 2 4 6 8 10-2 -4-6 -8-10 HH, Niemi, Eskola PRC83 (2011) 034901 HH PhD thesis x [fm] WPCF 2012 12.9.2012 H. Holopainen (FIAS) 6/21

Initial profiles from MCG We use sbc and swn profiles with Gaussian smearing, i.e s(x, y) = const. wn,bc where σ = 0.8 fm. We choose τ 0 = 1 fm. y [fm] T [MeV] 10 8 6 4 2 0-2 -4-6 -8-10 -10-8 -6-4 -2 0 2 4 6 8 10 x [fm] σ = 0.4 fm 1 [ 2πσ 2 exp (x x i) 2 +(y y i ) 2 ] 2σ 2, 500 450 400 350 300 250 200 150 100 50 0 y [fm] T [MeV] 10 8 6 4 2 0-2 -4-6 -8-10 -10-8 -6-4 -2 0 2 4 6 8 10 x [fm] σ = 0.8 fm WPCF 2012 12.9.2012 H. Holopainen (FIAS) 7/21 500 450 400 350 300 250 200 150 100 50 0

Centrality classes Let s use the number of BC/WN to define the centrality classes. Impact parameter varies freely in each centrality class. N/N tot 10-1 10-2 10-3 10-4 10-5 30-40% Au+Au snn = 200 GeV 20-30% 10-20% 5-10% 0-5% 0 100 200 300 400 N part Centrality N part range N part b [fm] 0-5 % 325-394 352 2.25 5-10 % 276-324 299 4.07 10-20 % 197-275 234 5.72 20-30 % 138-196 166 7.40 30-40 % 93-137 114 8.76 Centrality N bin range N part b [fm] 0-5 % 1405-951 351 2.27 5-10 % 950-752 299 4.04 10-20 % 752-471 234 5.71 20-30 % 470-284 166 7.38 30-40 % 283-161 114 8.74 HH, Niemi, Eskola PRC83 (2011) 034901 WPCF 2012 12.9.2012 H. Holopainen (FIAS) 8/21

v n determination We use event plane method v n = dφ cos[n(φ ψn )] dn dydφ dφ dn dydφ = cos[n(φ ψ n )] ψ n = (1/n) arctan ( p Ty / ptx ) We know the orientation of the event plane exactly! Remember this if comparing with the data. (e.g. Luzum, Ollitrault, The event-plane method is obsolete, arxiv:1209.2323 [nucl-ex]) WPCF 2012 12.9.2012 H. Holopainen (FIAS) 9/21

Results WPCF 2012 12.9.2012 H. Holopainen (FIAS) 10/21

Correlations v 2, ǫ 2 v 2 0.14 0.12 0.10 0.08 0.06 c( 2,v 2) =0.979 C 2 =07 (a) v 2 0.10 0.08 0.06 0.04 c( 2,v 2) =0.989 C 2 =0.147 (b) 0.04 0.02 sbc /s =0 0.02 sbc /s =0.16 20 30 % 20 30 % 0.1 0.3 0.4 0.5 0.6 2 0.1 0.3 0.4 0.5 0.6 2 Clear linear correlation between ǫ 2 and v 2. c(a, b) = ( )( ) a a ev b b ev σ a σ b ev WPCF 2012 12.9.2012 H. Holopainen (FIAS) 11/21

Correlations v 3, ǫ 3 0.06 0.05 0.04 c( 3,v 3) =0.893 C 3 =0.176 (a) 0.030 0.025 0.020 c( 3,v 3) =0.954 C 3 =0.087 (b) v 3 0.03 v 3 0.015 0.02 0.010 0.01 sbc /s =0 0.005 sbc /s =0.16 2030 % 2030 % 0.05 0.10 0.15 0 5 0.30 0.35 3 0.05 0.10 0.15 0 5 0.30 0.35 3 Clear linear correlation between ǫ 3 and v 3. c(a, b) = ( )( ) a a ev b b ev σ a σ b ev WPCF 2012 12.9.2012 H. Holopainen (FIAS) 12/21

Correlations v 4, ǫ 4 0.04 0.03 c( 4,v 4) =0.199 C 4 =0.109 (a) 0.016 0.014 0.012 0.010 c( 4,v 4) =0.199 C 4 =0.032 (b) v 4 v 4 0.008 0.02 0.006 0.01 sbc /s =0 2030 % 0.004 0.002 sbc /s =0.16 2030 % 0.05 0.10 0.15 0 5 0.30 0.35 4 0.05 0.10 0.15 0 5 0.30 0.35 4 For n = 4 there is basically no correlation. c(a, b) = ( )( ) a a ev b b ev σ a σ b ev WPCF 2012 12.9.2012 H. Holopainen (FIAS) 13/21

Correlations v 4, ǫ 4 v 4 0.010 0.008 0.006 0.004 c( 4,v 4) =0.511 C 4 =0.039 (b) v 4 0.016 0.014 0.012 0.010 0.008 0.006 c( 4,v 4) =0.199 C 4 =0.032 (b) 0.002 sbc /s =0.16 05 % 0.004 0.002 sbc /s =0.16 2030 % 0.05 0.10 0.15 0 4 0.05 0.10 0.15 0 5 0.30 0.35 4 However, in central collisions we can see the correlation, why? WPCF 2012 12.9.2012 H. Holopainen (FIAS) 14/21

Correlations v 4, ǫ 4 best est. v 4 rms 1 0.8 0.6 0.4 0 Ε 4 Ε 6,4 Ε 2,4 2 Ε 4 andε 2 2 Ε 2 0 10 20 30 40 50 60 centrality Gardim, Grassi, Luzum, Ollitrault Phys. Rev. C85, 024908 (2012) v 4 comes from ǫ 4 and ǫ 2 2. In central collisions contribution from ǫ 2 2 is weak we see ǫ 4, v 4 correlation In more peripheral collisions ǫ 2 2 is more important no ǫ 4, v 4 correlation WPCF 2012 12.9.2012 H. Holopainen (FIAS) 15/21

v 2 distributions 1.2 <v 2 <v 2 > =0.061 ('/s =0.0) > =0.043 ('/s =0.16) sbc %/s =0.0 sbc %/s =0.16 1.2 <v 2 <v 2 > =0.039 (swn) > =0.043 (sbc) swn -/s =0.16 sbc -/s =0.16 1.0 sbc & 2 1.0 swn. 2 sbc. 2 2) $##v2 ), P( 0.8 (a) 2),++v2 ), P( 0.8 (a) 0.6 0.6 P( 0.4 P( 0.4 0.0 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 (v 2! <v 2 >)/ <v 2 >, (" 2! <" 2 >)/ <" 2 > 0.0 (1.0 (0.5 0.0 0.5 1.0 1.5 2.0 2.5 (v 2 ) <v 2 >)/ <v 2 >, (* 2 ) <* 2 >)/ <* 2 > Distributions are not sensitive to transport properties! sbc and swn initial states are similar since they come from the same Glauber model. WPCF 2012 12.9.2012 H. Holopainen (FIAS) 16/21

v 3 distributions 1.2 <v 3 <v 3 > =0.023 (6/s =0.0) > =0.011 (6/s =0.16) sbc 4/s =0.0 sbc 4/s =0.16 1.2 <v 3 <v 3 > =0.012 (swn) > =0.011 (sbc) swn </s =0.16 sbc </s =0.16 1.0 sbc 5 3 1.0 swn = 3 sbc = 3 3) 322v3 ), P( 0.8 (b) 3) ;::v3 ), P( 0.8 (b) 0.6 0.6 P( 0.4 P( 0.4 0.0 /1.0 /0.5 0.0 0.5 1.0 1.5 2.0 2.5 (v 3 0 <v 3 >)/ <v 3 >, (1 3 0 <1 3 >)/ <1 3 > 0.0 71.0 70.5 0.0 0.5 1.0 1.5 2.0 2.5 (v 3 8 <v 3 >)/ <v 3 >, (9 3 8 <9 3 >)/ <9 3 > Distributions are not sensitive to transport properties! sbc and swn initial states are similar since they come from the same Glauber model. WPCF 2012 12.9.2012 H. Holopainen (FIAS) 17/21

v 4 distributions 1.2 <v 4 <v 4 > =0.013 (E/s =0.0) > =0.004 (E/s =0.16) sbc C/s =0.0 sbc C/s =0.16 1.2 <v 4 <v 4 > =0.003 (swn) > =0.004 (sbc) swn K/s =0.16 sbc K/s =0.16 1.0 sbc D 4 1.0 swn L 4 sbc L 4 4) BAAv4 ), P( 0.8 (c) 4) JIIv4 ), P( 0.8 (c) 0.6 0.6 P( 0.4 P( 0.4 0.0 >1.0 >0.5 0.0 0.5 1.0 1.5 2.0 2.5 (v 4? <v 4 >)/ <v 4 >, (@ 4? <@ 4 >)/ <@ 4 > 0.0 F1.0 F0.5 0.0 0.5 1.0 1.5 2.0 2.5 (v 4 G <v 4 >)/ <v 4 >, (H 4 G <H 4 >)/ <H 4 > Distributions are not sensitive to transport properties! Direct probe of the initial state fluctuations! WPCF 2012 12.9.2012 H. Holopainen (FIAS) 18/21

Correlations between different harmonics sbc N/s =0.0 sbc Q/s =0.0 0.9 sbc S/s =0.0 (a) sbc N/s =0.16 swn N/s =0.16 (b) sbc Q/s =0.16 swn Q/s =0.16 0.8 (c) sbc S/s =0.16 swn S/s =0.16 20R30 % 0.7 20T30 % c(v 2,v 3 ) 0.1 0.0 20O30 % c(v 3,v 4 ) 0.1 0.0 c(v 2,v 4 ) 0.6 0.5 0.4 0.3 M0.1 P0.1 0.0 0.5 1.0 1.5 2.0 p T [GeV] 0.0 0.5 1.0 1.5 2.0 p T [GeV] 0.1 0.0 0.5 1.0 1.5 2.0 p T [GeV] Only v 2 and v 4 have a linear correlation. This correlation is sensitive to initial conditions and transport properties. WPCF 2012 12.9.2012 H. Holopainen (FIAS) 19/21

Correlations between different harmonics c(ǫ 2,ǫ 3 ) c(v 2, v 3 ) c(ǫ 2,ǫ 4 ) c(v 2, v 4 ) c(ǫ 3,ǫ 4 ) c(v 3, v 4 ) sbc η/s = 0.0 0.09 0.11 6 0.32 0.03 0.11 sbc η/s = 0.16 0.09 0.09 4 0.61 0.02 0.06 swn η/s = 0.16 0.15 0.14 0.04 0.42 0.03 0.11 In the initial state the anisotropies are not correlated. Correlation between v 2 and v 4 builds up during the evolution. WPCF 2012 12.9.2012 H. Holopainen (FIAS) 20/21

Summary There is a linear correlation between ǫ 2, v 2 and ǫ 3, v 3, but for ǫ 4, v 4 the correlation is weak. v n distributions probe the initial state fluctuations! Only the correlation between v 2 and v 4 probes both initial conditions and transport properties use this to study ebye hydrodynamics? WPCF 2012 12.9.2012 H. Holopainen (FIAS) 21/21

Backup slides WPCF 2012 12.9.2012 H. Holopainen (FIAS) 22/21

Viscous hydrodynamics Time evolution of the shear-stress tensor µν αβ τ π π αβ + π µν = 2ησ µν 4 3 πµν θ 10 7 µν αβ σα λ πβλ + 74 315η µν αβ πα λ πβλ, Transport coefficients taken from massless limit, 14-moment approximation and relaxation time was assumed to be τ π = 5η/(ε+P) Denicol, Niemi, Molnar, Rischke, Phys. Rev. D85, 114047 (2012) Denicol, Koide, Rischke, Phys. Rev. Lett. 105, 162501 (2010) WPCF 2012 12.9.2012 H. Holopainen (FIAS) 23/21