Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Similar documents
"-Amino Acids: Function and Synthesis

Asymmetric Catalysis by Lewis Acids and Amines

CATALYTIC, ENANTIOSELECTIVE, ELECTROPHILIC

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Stereoselective reactions of the carbonyl group

Chiral Brønsted Acid Catalysis

ISCHIA ADVANCED SCHOOL OF ORGANIC CHEMISTRY

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

Highlights of Schmidt Reaction in the Last Ten Years

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

C H Activated Trifluoromethylation

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

Palladium-Catalyzed Electrophilic Aromatic C H Fluorination

Stereoselective reactions of enolates

Stereoselective reactions of enolates: auxiliaries

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

Suggested solutions for Chapter 41

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

Asymmetric Nucleophilic Catalysis

Homogeneous Catalysis - B. List

Use of Cp 2 TiCl in Synthesis

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Zr-Catalyzed Carbometallation

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

Back to Sugars: Enzymatic Synthesis

Short Literature Presentation 10/4/2010 Erika A. Crane

Chiral Bronsted Acids as Catalysts

Tips for taking exams in 852

Electrophilic Carbenes

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk

Enantioselective Protonations

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chiral Supramolecular Catalyst for Asymmetric Reaction

B X A X. In this case the star denotes a chiral center.

Advanced Organic Chemistry

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

Requirements for an Effective Chiral Auxiliary Enolate Alkylation

Alpha Substitution and Condensations of Enols and Enolate Ions. Alpha Substitution

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009

Abstracts VII. Phthalocyanines and Related Compounds. M. S. Rodr guez-morgade and T. Torres

Chiral Ru/PNNP complexes in catalytic and stoichiometric electrophilic O- and F-atom transfer to 1,3-dicarbonyl compounds*

Halogen Bond Applications in Organic Synthesis. Literature Seminar 2018/7/14 M1 Katsuya Maruyama

Conjugate (1,4-) addition

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Organocatalysed Sigmatropic Rearrangement. Petri Pihko Group Literature Seminar, Nicolas Probst 08/03/2011

Topic 18: Nucleophilic Sigma Bonds

[3,3]-Sigmatropic rearrangements

π-alkyne metal complex and vinylidene metal complex in organic synthesis

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine N-oxide

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Kinetic Resolutions. Some definitions and examples Resolution: A process leading to the separation of enantiomers, or derivatives thereof.

Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet Spengler Reaction of Indolyl Dihydropyridines

Nucleophilic Heterocyclic Carbene Catalysis. Nathan Werner Denmark Group Meeting September 22 th, 2009

Morita Baylis Hillman Reaction. Aaron C. Smith 11/10/04

Direct Catalytic Cross-Coupling of Organolithium

Additions to Metal-Alkene and -Alkyne Complexes

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

Denmark s Base Catalyzed Aldol/Allylation

Denmark Group Meeting. & Electrophilic rearrangement of amides

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES.

Dual enantioselective control by heterocycles of (S)-indoline derivatives*

Ynolate Chemistry. Jeff Kallemeyn October 22, 2002

Chiral Brønsted Acid Catalysis

Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions

D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group

Department of Chemistry, University of Saskatchewan Saskatoon SK S7N 4C9, Canada. Wipf Group. Tyler E. Benedum Current Literature February 26, 2005

Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)-

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

1. Theoretical Investigation of Mechanisms and Stereoselectivities of Synthetic Organic Reactions

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Catalyzed N-acylation of carbamates and oxazolidinones by Heteropolyacids (HPAs)

Career Review of Dean Toste I. 2015/9/9 Zhi Ren

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Chiral Auxiliaries. attach auxiliary Substrate Substrate Auxiliary

Stereoselective Organic Synthesis

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Enolates: Z(O,R) (O,R)- and E(O,R) (O,R)-enolates

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions

Total synthesis of Spongistatin

i-pr 2 Zn CHO N Sato, I.; Sugie, R.; Matsueda, Y.; Furumura, Y.; Soai, K. Angew. Chem., Int. Ed. Engl. 2004, 43, 4490

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

Story Behind the Well-Developed Chiral Lewis Acid in Asymmetric Diels-Alder reaction

Asymmetric Copper-Catalyzed Synthesis of α-amino Boronate Esters from N-tert- Butanesulfinyl Aldimines

Carbonyl Ylide Cycloadditions

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

CHT402 Recent Advances in Homogeneous Catalysis Organocatalysis Workshop

Chiral Anions in Asymmetric Catalysis. Hannah Haley Burke Group Literature Seminar 13 April 2013

Corey-Bakshi. Bakshi-Shibata Reduction. Name Reaction Nilanjana Majumdar

Background Information

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

Transcription:

Strategies for Catalytic Asymmetric Electrophilic a alogenation of Carbonyl Compounds 1 2 Y Catalyst [X + ] 1 X! 2 Y intermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359 4362 amashima, Y.; Sodeoka, M. et al J. Am. Chem. Soc. 2002, 124, 14530 14531 France, S.; Lectka, T. et al J. Am. Chem. Soc. 2004, 126, 4245 4255 Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108 4109 alland,. ; Jørgensen, K. A. et al J. Am.Chem. Soc. 2004, 126, 4790 4791 Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2004, 43, 5507 5510 Zhang, Y. ; Shibatomi, K.; Yamamoto,. J. Am. Chem. Soc. 2004, 126, 15038 15039 Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2005, 44, 2 5 (early view) Ali Z. Ding Advisor: Prof. W. D. Wulff May 12 2005

Introduction a-alogenated Carbonyl Compounds Linchpins for further stereospecific manipulations alogen substituents can sometimes dramatically alter its physical, chemical and biological properties Increasingly important structural motifs in medicinal chemistry and material sciences. Me F F 3 C BMS-204352 MaxiPost Currently being assessed worldwide in phase III clinical trials for treatment of acute ischemic stoke estreich, M. Angew. Chem. Int. Ed., 2005, 44, 2324-2327 Ibrahim,.; Togni, A. Chem. Commun. 2004, 1147 1155

Introduction Approaches to the Chiral a-alogenated Carbonyl Compounds (1) eagent-controlled halogenation: asymmetric halogenation of enolates using chiral electrophilic halogenating agents! 1 [X + ] Y 2 (2) Substrate-controlled halogenation: diastereoselective electrophilic halogenation of chiral enolates or enol ethers 1 X! 2 Y [X + ] 1 Y* 1 X! Y* 2 2 (3) Catalytic asymmetric halogenation of carbonyl compounds 1 2 Y Catalyst [X + ] 1 X! 2 Y estreich, M. Angew. Chem. Int. Ed., 2005, 44, 2324-2327 Taylor, S. D.; Kotoris, C. C. and um, G. Tetrahedron, 1999, 55,12431-12477

oncatalytic alogenation Substrate-controlled alogenation: Use of Chiral Auxiliaries estreich, M. Angew. Chem. Int. Ed., 2005, 44, 2324-2327 Taylor, S. D.; Kotoris, C. C. and um, G. Tetrahedron, 1999, 55,12431-12477

oncatalytic alogenation eagent-controlled alogenation: Chiral Fluorinating eagents Pioneering work: Differding, E. and Lang,. W. Tetrahehron Lett. 1988, 29, 6087-6090 Moderate yields and low to moderate enantioselectivities Syntheses of these reagents require several steps Wong, C.-., Angew. Chem. Int. Ed., 2005, 44, 192 Taylor, S. D.; Kotoris, C. C. and um, G. Tetrahedron, 1999, 55,12431-12477

oncatalytic alogenation eagent-controlled alogenation: Cinchona Alkaloids Fluorinating eagents [F + ] F X - [F + ] = 2BF - 4 F PhS 2 PhS 2 F Selectfluor, -fluorobenzenesulfonimide or F-TEDA or FSI 10 11 12 13 Cinchona alkaloids (CA) are readily available in both pseudo-enantiomeric forms Easily prepare, more reactive Can be generated and used in situ Can be reloaded by F-TEDA or FSI and reused without loss in selectivity Can such CA be used catalytically in these reactions? Ibrahim,.; Togni, A. Chem. Commun. 2004, 1147 1155

Catalytic Asymmetric Fluorination rgano-catalytic Enantioselective Fluorination by Phase-Transfer Catalysts Kim, D. Y. and Park, E. J. rg. Lett., 2002, 4, 545 547.

Catalytic Asymmetric Fluorination rgano-catalytic Enantioselective Fluorination by L-Proline Derevatives + F + Source * F! ab 4 F! Challenges: -fluorination of catatlyst Fluorination of substrate should be faster acemization and difluorination Both SM and product can form enamine species a-proton of product is more acidic F atom is not big enough to contribute to an added steric shielding Products are not stable to survive silica gel Screen catalysts and solvents Lower the catalyst loading Screen fluorinating reagents Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2005, 44, 2 5

Catalytic Asymmetric Fluorination rgano-catalytic Enantioselective Fluorination by L-Proline Derevatives Ph Ph X 14a, X= 14b, X= 2 15 16, TMS Ar Ar Ar= CF 3 CF 3 MTBE= FSI, 16(1mol%) MTBE, T F ab 4 Me, T F! PhS 2 PhS 2 FSI F = Pr (96%ee), Bu(91%ee), ex (96%ee), Bn(C 2 ) 3 (91%ee), Yield: 55-95% Bn (93%ee), Cy (96%ee), tbu(97%ee), 1-Ad (96%ee) In the solvents other than MTBE, catalyst 16 decomposes Products were reduced to alcohol in situ Dr. MacMillan s Work: Enantioselective rganocatalytic Direct a-fluorination: Beeson, T. D. and MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, in press True nucleophiles toward electrophilic fluorine: enols, enolates or enamines Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2005, 44, 2 5

Catalytic Asymmetric Fluorination Chiral Lewis Acid Catalyzed Asymmetric Fluorination Addition of sub-stoichiometric amount of Lewis acid significantly accelerates formation of fluorination product 12 17 18 Ti-based Lewis acids are the most potent catalysts Umemoto, T et al J. Am. Chem. Soc., 1990, 112, 8563 8575 intermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359 4362

Catalytic Asymmetric Fluorination Ti 2 [,-(TADDLLato)] Catalyzed Asymmetric Fluorination 12 intermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359 4362 Ibrahim,.; Togni, A. Chem. Commun. 2004, 1147 1155

Catalytic Asymmetric Fluorination Mechanism of Ti Catalyzed Asymmetric Fluorination 12 The bidentate nature of substrates is beneficial for high facial selectivity Piana, S.; Togni, A. et al Angew. Chem., Int. Ed., 2002, 41, 979 982 Ibrahim,.; Togni, A. Chem. Commun. 2004, 1147 1155

Catalytic Asymmetric Fluorination Asymmetric Fluorination Catalyzed by ther Lewis Acids 13 Alcoholic solvents can work well ot sensitive to water Catalyst can be recycled and re-used without loss of any slectivity amashima, Y.; Sodeoka, M. et al J. Am. Chem. Soc., 2002, 124, 14530 14531.

Catalytic Asymmetric Fluorination Asymmetric Fluorination Catalyzed by ther Lewis Acids FIP= F 3 C CF 3 13 Ph M Ph X - 62 M= Cu, X - = Tf 63 M= i, X - = 4 Ibrahim,.; Togni, A. Chem. Commun. 2004, 1147 1155 Ma, J.-A. and Cahard, D. Tetrahedron: Asymmetry, 2004, 15, 1007 Shibata,.; Ishimaru, T.; agai, T., Kohno, J. and T. Toru Synlett 2004, 1703 1706

Catalytic Asymmetric Chlorination & Bromination Chiral Lewis Acid Catalyzed Asymmetric Chlorination & Bromination 1 2 Me + X 5mol% 38 or 39 MeC, rt 1 2 X Me X=, up to 88%ee X= Br, up to 23%ee intermann, L. and Togni, A. elv, Chim. Acta, 2000, 83, 2425 2435 Me I + Bn Me 64 65 5mol% 38 1.2eq py toluene, 50 o C Me Bn Me (S)-66, 67%, 71%ee With 2, (S)-66, 62%, 30%ee intermann, L. and Togni, A. elv, Chim. Acta, 2004, 87, 605 610 1 3 2 + X 10mol% 67 Et 2 1 2 2 X X=, up to 77%ee X= Br, up to 82%ee Marigo, M.; Kumaragurubaran,.; Jørgensen, K. A. Chem. Eur. J. 2004,10, 2133 2137 t-bu 2 Tf - Cu t-bu (S, S)-67 estreich, M. Angew. Chem. Int. Ed., 2005, 44, 2324-2327

Catalytic Asymmetric Chlorination & Bromination rgano-catalyzed Asymmetric Chlorination & Bromination Acyl alides Tadem halogenation/esterification process of acyl halides 67 Base TF -78 o C C 68 (2.0eq) 69(10mol%) 70 or 71 (1.0eq) TF, -78 o C Ar X 72 LG X 72 u C 68 Base 67 Ph LG - 69 Me u 69 + u Br Br Br Br LG X 74 X LG - LG + u X - 73 70 71 70 or 71 The choice of chlorinating agents is pivotal for the reaction to turn over France, S.; Lectka, T. et al J. Am. Chem. Soc. 2004, 126, 4245 4255

rgano-catalytic Asymmetric Chlorination & Bromination ptimization of eaction Conditions The choice of chlorinating agents: the window is very narrow X Unreactive: Too reactive:, 2 The choice of base: reactive, cheap, easy to handle Me 2 Me 2 Me 2 Me 2 70 C 6 5 Me 2 Me 2 C 5 C 6 69 70 71 67 68 75 76 France, S.; Lectka, T. et al J. Am. Chem. Soc. 2004, 126, 4245 4255

rgano-catalytic Asymmetric Chlorination & Bromination Choice of Base and Summary a, 15-crown-5 69(10mol%), 70(1.0eq) TF, -78 o 5 C 6 C to rt, 4h 67 75 = Ph, PhC 2, 1-p, p- 2 Ph, Et, o-ph Yield: 43-79%, ee: 90-99% ac 3, 15-crown-5 69(10mol%), 70(1.0eq) Ph, -35 o 5 C 6 C to rt, 5h 67 75 = Ph, PhC 2, 1-p, p-meph Yield: 56-68%, ee: 88-91% Moderate yields, high enantioselectivity Inexpensive reagents Can be scaled up Ketenes from other sources (Wolff rearrangement) can be used as well France, S.; Lectka, T. et al J. Am. Chem. Soc. 2004, 126, 4245 4255

rgano-catalytic Asymmetric Chlorination Asymmetric Chlorination of Aldehydes Catalyzed by Chiral Amines 76 77 79 8 examples Yield: 60-88% ee: 97-99% 78 Such cyclic transition state might enforce activation of 70 in the asymmetric environment of an e-rich enamine mediated by proton 70 80 70 Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108 4109

rgano-catalytic Asymmetric Chlorination of Aldehydes Asymmetric Chlorination of Aldehydes: Catalysts and Chlorinating eagents CS 82 83 82 83 70 70 70 70 70 81 82 83 L-Proline doesn t work well CS doesn t work well Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108 4109

rgano-catalytic Asymmetric Chlorination of Aldehydes Asymmetric Chlorination of Aldehydes: the Solvent Effects 82 82 Inert to halogenation reagent ptimal selectivity, reaction rate, and chemical yield Product epimerization, formation of,-dichlorooctanal, or octanal aldol dimerization were comprehensively suppressed using these conditions Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108 4109

rgano-catalytic Asymmetric Chlorination of Aldehydes Asymmetric Chlorination of Aldehydes: The Scope Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108 4109

rgano-catalytic Asymmetric Chlorination of Aldehydes Asymmetric Chlorination of Aldehydes: b-chiral Aldehydes - 82 70 82 Internal asymmetric induction is almost completely over-compensated Selectivity is sterically and chemically good Substrate scope is broad All the reagents (70, 82 and - 82) are bench stable and commercially available Products are stable Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108 4109

rgano-catalytic Asymmetric Chlorination of Aldehydes Asymmetric Chlorination of Aldehydes: Jørgensen s Work Catalyst! ipr ipr CS CS 2 3c Ph 3i Ph alland,. ; Jørgensen, K. A. et al J. Am.Chem. Soc. 2004, 126, 4790 4791

rgano-catalytic Asymmetric Chlorination of Aldehydes Asymmetric Chlorination of Aldehydes: The Scope CS (1.3eq) 3c or 3i (10mol%)! C 2 2, rt, 1-10h 1 2 CS 2 3c Asymmetric Bromination & Iodination of Aldehydes 1d 1a BS 3i (10mol%) C 2 2, rt IS 3i (10mol%) C 2 2, rt! I! Br 80%ee 24%ee Ph 3i Ph alland,. ; Jørgensen, K. A. et al J. Am.Chem. Soc. 2004, 126, 4790 4791

rgano-catalytic Asymmetric Chlorination of Ketones rgano-catalyzed Asymmetric Chlorination of Ketones CS Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2004, 43, 5507 5510

rgano-catalytic Asymmetric Chlorination of Ketones Asymmetric Chlorination of Ketones: Effects of Additives & Solvent CS Ph Ph 3i C 3 C is the best solvent Significant improvement by adding acids: Promotion of enamine formation Suppression of catalyst chlorination Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2004, 43, 5507 5510

rgano-catalytic Asymmetric Chlorination of Ketones Asymmetric Chlorination of Ketones: The Scope 3i (20mol%) 2-2 -PhC 2 (50mol%) CS (2eq), MeC, 20h 1 2! Ph Ph 3i CS igh e.e. Moderate yields: poly-chlorination occurs Broad substrate scope Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2004, 43, 5507 5510

Asymmetric Chlorination of Ketones Back to eagent Controlled Asymmetric Chlorination of Ketones eagent-controlled process can sometimes be competitive alternative! 1 Si 2 3 + X X 1 Lewis acid! X= or 1 3 2 Chirality of auxiliary (X) could be transferred to silicon enolates Lewis acids are necessary to activate 1 Chlorinating reagents 1 can be prepared easily Zhang, Y. ; Shibatomi, K.; Yamamoto,. J. Am. Chem. Soc. 2004, 126, 15038 15039

Asymmetric Chlorination of Ketones Asymmetric Chlorination of Ketones: Effects of X group & Si Group Zr 4 is uniquely reactive The size of X group The size of si group Yields are high (>90%) Zhang, Y. ; Shibatomi, K.; Yamamoto,. J. Am. Chem. Soc. 2004, 126, 15038 15039

Asymmetric Chlorination of Ketones Asymmetric Chlorination of Ketones: Scope

Asymmetric Chlorination of Ketones Asymmetric Chlorination of Ketones: Potential to be Catalytic Si Zr 4 ( ) ( ) n n 1-p 1c 1-p 1-p 2c 1-p CF 3 S 2 CF 3 S 2 2c can be easily recovered and chlorinated back to 1c ecovered 1c can be re-used for the reaction This novel process might be extended to catalytic asymmetric variants! Zhang, Y. ; Shibatomi, K.; Yamamoto,. J. Am. Chem. Soc. 2004, 126, 15038 15039

Catalytic Asymmetric alogenation of Carbonyl Compounds Conclusions Enantioselective electrophilic a-halogenation of carbonyl compounds: a topical area of current asymmetric catalysis A new tool has presented itself to synthetic organic chemistry More applications are expected

To What They Should Thank? 2BF - 4 F PhS 2 PhS 2 F Dr. Togni ET Selectfluor, -fluorobenzenesulfonimide or F-TEDA or FSI 12 13 Br X Br Br Br 70 71 Wong, C.-., Angew. Chem. Int. Ed., 2005, 44, 192 X=, CS X= Br, BS X= I, IS Taylor, S. D.; Kotoris, C. C. and um, G. Tetrahedron, 1999, 55,12431-12477 Dr. Lectka Johns opkins U. Dr. MacMillan Caltech Dr. Jørgensen Aarhus U. Dr. Yamamoto U. of Chicago