STAAR Science Tutorial 40 TEK 8.9C: Topographic Maps & Erosional Landforms

Similar documents
Notes and Summary pages:

Unit 7.2 W.E.D. & Topography Test

Erosional Features. What processes shaped this landscape?

EROSIONAL FEATURES. reflect

TEACHER BACKGROUND KNOWLEDGE. Surface Processes: Weathering and Erosion

What type of land feature is located at Point A? A Cliff B Delta C Mountain D Valley

UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA

EARTH S CHANGING SURFACE

What is weathering and how does it change Earth s surface? Answer the question using

Essential Questions. What is erosion? What is mass wasting?

Weathering, Erosion, Deposition

Science EOG Review: Landforms

Midterm Review. Nata/Lee

Read Across America. Listen as I read for facts about Volcanoes. In the Shadow of the Volcano

Earth s Dynamic Surface

Constructive and Destructive Forces. Processes That Act Upon Earth s Surface Features

Chapter 2. Wearing Down Landforms: Rivers and Ice. Physical Weathering

EROSION AND DEPOSITION

Weathering, Erosion and Deposition

Surface Events & Landforms. Mrs. Green

Chapter 3 Models of the Earth. 3.1 Finding Locations on the Earth. 3.1 Objectives

A physical feature of the Earth s surface

The Effect of Weather, Erosion, and Deposition in Texas Ecoregions

Page 1. Name:

Earth s Layers. Earth s Surface

Changes over Time: Destructive Processes

Weathering Erosion and Deposition. Presented by Kesler Science

Earth and Space: Topographic Maps Satellite Images

1/6/ th Grade Earth s Surface. Chapter 3: Erosion and Deposition. Lesson 1 (Mass Movement)

What is a map? A Map is a two or three-dimensional model or representation of the Earth s surface. 2-Dimensional map

Analyzing our Topic IF SO, MAKE THE CHANGES AND BE READY TO REPORT OUT!

Geology 101 Lab Worksheet: Topographic Maps

Chapter 3 SECTION 1 OBJECTIVES

Weathering and Erosion

Weathering/ Erosion/ Deposition in the Texas Ecoregions

What are the different ways rocks can be weathered?

Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p ) Workbook Chapter 4, 5 WEATHERING

PHYSICAL GEOGRAPHY General Information

Weathering, Erosion, Deposition, and Landscape Development

Earth s Surface. Name Date. Key Concepts Choose the letter of the best answer.

Unit 1: Basics of Geography Test Review

Weathering and Erosion

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands

Changes to Land 5.7B. landforms: features on the surface of Earth such as mountains, hills, dunes, oceans and rivers

Regents Earth Science Unit 1 Earth Dimensions

Erosion and Deposition

Think about the landforms where you live. How do you think they have changed over time? How do you think they will change in the future?

Name: Which rock layers appear to be most resistant to weathering? A) A, C, and E B) B and D

Name. 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different soil horizons, A, B, C, and D, are shown.

Name: Mid-Year Review #2 SAR

Chapter 23 test. Multiple Choice Identify the choice that best completes the statement or answers the question. Figure 23-1

1. Base your answer to the following question on the map below, which shows the generalized bedrock of a part of western New York State.

Lab Topographic Maps. Name: Partner: Purpose. Background Information

Biosphere. All living things, plants, animals, (even you!) are part of the zone of the earth called the biosphere.

Latitude and Longitude

Chapter 3 Erosion and Deposition. The Big Question:

Erosion and Deposition

Exploring Geography. Chapter 1

APPENDIX A GLOSSARY. Appendix A.1

3 Erosion and Deposition by Ice

Which landscape best represents the shape of the valleys occupied by glaciers? A) B) C) D)

Pratice Surface Processes Test

Chapter 1 Section 2. Land, Water, and Climate

How do glaciers form?

We will explore the Texas Ecoregions and learn the specifics of a few. Understand that each ecoregion has its own characteristics that make it

CT Science Standard 4.3 Erosion Water has a major role in shaping the earth s surface. Trail Guides

REVIEW. There are 2 types of WEATHERING: 1. CHEMICAL 2. PHYSICAL. What is WEATHERING? The breakdown of rocks at or near Earth s surface

1. Any process that causes rock to crack or break into pieces is called physical weathering. Initial product = final product

THE SCIENCE OF MAPS. ATL Skill: Critical thinking - Use models and simulations to explore complex systems and issues

Weathering & Erosion

Potential short answer questions: What is Pangea? Describe at least 4 pieces of evidence that led Wegener to suggest the theory of Continental Drift.

Topographic Maps. More than a Road Map

Figure 1 The map shows the top view of a meandering stream as it enters a lake. At which points along the stream are erosion and deposition dominant?

Science and Health EFFECT OF EROSION ON THE CONDITION OF SOIL AND LAND SHAPE

About places and/or important events Landmarks Maps How the land is, hills or flat or mountain range Connected to maps World Different countries

Erosion and Deposition

Topographic Maps and Landforms Geology Lab

True or False: The Earth s surface has stayed the same for thousands of years

Using Map and Compass Together

deep within the planet. They are also shaped by conditions on the planet s surface. In

1. Erosion by Running Water Most powerful cause of erosion


Seas. A sea is a part of an ocean that is nearly surrounded by water. The Mediterranean, Arctic and Black Sea are really part of the Atlantic Ocean.

Geography Knowledge Organiser: What is a Geographer?

Unit 3 Review - Surface Processes

Laboratory Exercise #2 Introduction to Quadrangle Maps

Day 3 Weathering and Erosion.notebook. October 02, Section 7.2. Erosion and Deposition. Objectives

Page 1. Name:

Mapping Earth. How are Earth s surface features measured and modeled?

Unit 3 Study Guide -- Greenberg science, 6C

Practice 3rd Quarter Exam Page 1

Grade 5 Hands on Science Weathering, Erosion and Deposition

Chapter 12 Weathering and Erosion

1. The map below shows a meandering river. A A' is the location of a cross section. The arrows show the direction of the river flow.

56H. This system allows definition of points on the Earth s surface to within 100 meters. Page 20. Navigation Systems Basics of Maps

Practice Questions. (4) It connects points of equal air temperature. Which of the following items is a model? lithosphere and the troposphere?

Forces That Shape Earth. How do continents move? What forces can change rocks? How does plate motion affect the rock cycle?

Laboratory Exercise #2 Introduction to Quadrangle Maps

LANDFORMS. Extra Credit. Name Date

The boulder was most likely moved to this location by A) glacial ice B) prevailing wind C) streamfiow D) volcanic action

Transcription:

Name: Teacher: Pd. Date: STAAR Science Tutorial 40 TEK 8.9C: Topographic Maps & Erosional Landforms TEK 8.9C: Interpret topographic maps and satellite views to identify land and erosional features and predict how these features may be reshaped by weathering. Topography and Landforms Topography is a description of all of the physical features (landforms) of a particular area of land, such as mountains, hills, canyons and valleys. It is also the name given to the scientific study of these landforms. A mountain is a steep-sided landform rising above the surrounding land, usually forming a peak at its highest point. In the U.S., landforms called mountains usually rise over 1000 ft. (300 m) the surrounding land, and hills rise less than 1000 ft. A large, flat-toped area rising above the surrounding region is called a plateau. A smaller flat-topped mountain or hill is called a mesa. A valley is long depressed area through which a river flows. The upper end of long river valleys often form V-shaped canyons with steep sides. The middle section of a valley is generally wider and less deep, and may have step-like terraces parallel to the river. The lower end of river valleys are very flat and wide, with natural levees, meander bends and oxbow lakes. When a river flows into a large lake or ocean, it forms a delta. Maps A map is a flat model of all or part of the Earth s three-dimensional surface, scaled-down (made smaller than reality) and flattened (made two-dimensional or flat) to fit on a conveniently-sized page. To make a flat representation, the map maker usually starts with a photograph looking straight down from a satellite or airplane. Shown below is a satellite image and map of Washington, DC.

If the map is of a small area, very little distortion of land shape and size occurs when the actual landforms are flattened for the map. In maps covering large areas, such as maps of whole countries or continents, or even of the entire surface of Earth, significant distortions of shape and size are created by the projection method, when the spherical surface of earth is stretched or cut apart and flattened. Many global projections make areas close to the North and South Pole (e.g., Alaska or Antarctica) seem much bigger than they actually are. For example, compare the map of Antarctica with a polar projection (on the left) and a world map centered on the equator with polar areas stretched (on the right, below). The polar projection of Antarctica is more accurate in shape and size than the equatorial projection of the world map. All maps, including topographic maps, should include a scale, while gives the actual horizontal distance on the ground that is represented by a unit of distance on the map. Scales are usually stated in two ways: as a ratio between the size on the map and size in reality (e.g., 1:62,500), meaning that one unit on the map equals 62,500 units on the ground; and as a map unit to ground unit conversion factor (e.g., 1 = 1 mile), meaning that one inch on the map equals one mile on the ground. All maps include a compass rose, indicating the orientation of the map to actual directions on Earth. Most maps have north at the top of the page and south at the bottom, with east on the right and west on the left.

All maps use symbols or color shading to show various natural or human-created features, such as rivers, lakes, roads and cities. A key to the symbols used on a map is usually included in or near the map s title block. Small-scale maps showing large areas typically show only major features, such as the largest cities or biggest lakes. Large-scale maps showing small areas include more features. On color maps, water features are typically blue. On non-topographic maps, major mountains may be indicated only with a X labeled with name and the peak elevation. Locations on maps are usually identified by a grid of latitude and longitude lines. Latitude lines run from west to east, each parallel to the equator (which is 0 degrees latitude), and each representing a certain number of degrees north or south of the equator in degrees of arc. The North Pole is found at 90 degrees north latitude and the South Pole at 90 degrees south latitude. Longitude lines run from north to south, pole to pole, and are not parallel to one another, because they converge at the poles, and are farthest apart at the equator. Again, they are numbered in degrees of arc, starting with the Prime Meridian (0 degrees longitude, which passes near London, England in Europe), numbered both in degrees east and west from the prime meridian. The lines are both measured in degrees of angle, with 90 degrees representing one quarter of a circle. Parts of a degree are represented in minutes and seconds, here not units of time, but parts of a degree: there are 60 minutes in one degree of arc, and 60 seconds in one minute of arc. Topographic Maps A topographic map is a map on which information about vertical elevation above sea level is represented, either by color shading to represent approximate elevation, or by use of contour lines. Color coding is usually only found on maps of large areas such as countries or continents, while contour lines are used on detailed maps of smaller areas. An example of a topographic map is shown to the right Elevation, as shown on a topographic map, is the actual vertical distance from average (mean) sea level to a particular point on land represented on the map. On maps made in the United States, elevation is usually stated in feet above (or below) mean sea level. Elevation is stated in meters above or below mean sea level in all other countries. The elevation of Carrollton, Texas is about 700 feet (220 meters above sea level

A contour line is a line on a topographic map connecting all points with the same elevation. For example, the line on a map representing the water s edge of a lake would be a contour line, because all points along the lake shore would have the same elevation. While a contour line can be drawn at any elevation, most contour lines on topographic maps are spaced at equal intervals of elevation, called the contour interval. The contour interval of a topographic map is the change in elevation represented by each successive contour line. In areas with little elevation change, the contour interval might be a small as one or two meters (or five feet in the U.S.). In mountainous areas, the contour interval might be as large as 10 or 20 meters (or 50 feet in the U.S.). The contour interval of a topographic map is usually stated in the title and scale block on the map, or it can be determined from the index contours. On maps where the contours are crowded close together, not every contour line will be labeled with its elevation. It is typical for every fifth contour, called the index contour, to be labeled with the elevation that the contour line represents, and to be drawn with a heavier line. If every fifth contour is labeled, the contour interval can be found by dividing the difference between two adjacent index contours by five. Topographic maps typically come in three standard scales, each with a different amount of detail and scale. In the United States, the three scales are a: (1) 1:250,000 ratio, covering 1 degree of latitude by 2 degrees of longitude, with a scale of one inch equaling 4 miles; (2) a 1:62,500 ratio, covering a 15-minute square (1/4 degree x 1/4 degree) area, with a scale of one inch on the map equaling one mile on the ground, and a (3) 1:24,000 ratio, covering a 7.5 minute (1/8 degree x 1/8 degree) area with a scale of 2.4 inches on the map for every mile on the ground. A ridge on a topographic map is represented by a series of v-shaped contour lines pointing towards lower elevations. A valley on a topographic map is represented by a series of v-shaped contour lines pointing towards higher elevations. The closer the contour lines on the map are to one another, the steeper the slope of the ridge or valley. When the slope of a mountain or valley is completely vertical (straight up-and-down), forming a cliff, the contour lines are crowded together to form a single line. Weathering, Erosion and Deposition Weathering is the process that breaks down solid rock into smaller pieces of rock such as gravel, and eventually into even smaller particles such as sand, silt and clay. The product of the weathering process is called sediment. The weathering process can either occur mechanically or chemically. The mechanical weathering processes include abrasion, freeze-thaw wedging, pressure release, plant growth and animal actions. Abrasion is aided by the force or moving water in a river or a blowing wind, carrying small sharp sediment particles that wear down the solid rock it flows over. The chemical weathering agents include oxygen (oxidation reactions), acid rain caused by human-created pollution, naturally acidic

rain caused by carbon dioxide dissolving in rainwater, acids secreted by plants, and water (dissolving minerals in the rock). Weathering is usually a slow process, but whole mountains can be reduced to hills and even level plains by weathering and erosion occurring over millions of years. Erosion is the process of moving sediment from one location to another. Erosional agents include moving water, wind, gravity, and glacial action. Moving water, as in streams, rivers and ocean waves, is by far the strongest agent of erosion. The wind is generally the weakest agent of erosion, except in desert areas with little plant cover to hold the soil. In all cases, solid rock high on a mountain becomes sediment at the bottom of the mountain or at the end of a river. Deposition is the placement of the sediment created by weathering and moved by erosion. The present deposition of sediment is often temporary future erosion is likely to move the sediment again and deposit it in another location. The bottom of valleys are filled by erosion and deposition, and where a river enters a large body of water, the sediment is deposited into a delta. Predicting Future Landforms Over time, landforms such as mountains can be built up by tectonic or volcanic forces, or worn down by weathering and erosional forces. If a question on the STAAR test asks for a prediction about the shape of future landforms, it must first give you clues about which processes (tectonic or erosional) are active in the area. The phrases geologically active, volcanically active, uplift, compressive forces, convergent boundary, folding, fault-block mountains and upwarping all suggest that mountain building processes are at work, and that over long spans of time the present elevations of mountains are likely to grow higher. The Himalaya Mountains in Asia, and the San Gabriel Mountains in California are both examples of mountains that are still growing because of compressional forces created by convergent plate boundaries. If the description suggests that a divergent boundary on land is active, or that the question concerns a rift valley, you should expect the valley to widen and eventually fill with water. The phrases geologically stable, weathered, landslide, slump, creep, icewedging, freeze-thaw, abrasion, and eroded all suggest that the primary forces at work are weathering and erosion, and that over time elevations of mountain peaks are likely to lower, valleys are likely to fill in with sediment, raising their bottom elevations, canyons are likely to widen, and the shape of mountains generally will become lower and smoother. Before and after profiles of mountain, mesa and canyon landforms are shown below, assuming only weathering and erosional forces over long time periods.

One exception where weathering and erosional forces make a mountain have a sharper or more angular profile is glacial carving, which makes the mountain peaks very pointed (a horn ), a ridge between two valley knife-edged and sharp (an arête ), and a valley on the side of a peak very steep sided (a cirque ). In an area that is being uplifted by tectonic forces, river valleys tend to become deeper. The Grand Canyon was created because the Colorado River cut down into the rock as the rock (the Colorado Plateau) was being uplifted. The canyon also grew wider over time, due to the erosional forces working on the canyon edges. Practice Questions 1. What information is included on topographic maps that is not included on other maps? 2. A. is a line on a topographic map connecting all points with the same elevation. 3. The of a topographic map is the change in elevation represented by each successive contour line. 4. An is a thicker contour line labeled with the elevation of that line, usually placed at every fifth contour for reference. 5. To find the contour interval of a topographic map, assuming that every fifth contour line in an index contour, divide the difference between adjacent index contours by. 6. On a topographic map, when the contour lines form a V pointing uphill, usually with a line representing a creek or river at the center of the V, it indicates a. 7. On a topographic map, when the contour lines form a V pointing downhill, it indicates a. 8. A is indicated by an x labeled with an elevation, surrounded by a series of circular contour lines forming a bulls-eye pattern. 9. Draw a before and after profile of a mountain, showing erosion over a long period of time.

1000 10. Draw a before and after profile of a canyon or deep valley, showing erosion over a long period of time. Use the following topographic map from Palo Duro Canyon State Park in west Texas to answer questions 11-35. C G Prairie Dog Town 900 B Fork Red River A Goodnight Peak F 1000 J 900 950 L 1000 Brushy Butte E 950 H 900 K N 900 D Contour Interval = 10 meters 1.0 km 11. What is the elevation of Goodnight Peak? 12. What is the elevation of Brushy Butte? 13. What is the elevation of point A? 14. What is the elevation of point B?

15. If you walked along the creek from point A to point B, what would be the total change in elevation? In what direction would you be walking? 16. What is the elevation of point C? 17. What is the elevation of point D? 18. What is the elevation of point E? 19. What is the elevation of point F? 20. What is the elevation of point G? 21. What is the elevation of point H? 22. What is the elevation of point J? 23. If you walked along the creek from point H to point J, what would be the total change in elevation? In what direction would you be walking? 24. What is the lowest labeled point on the map? 25. What is the highest labeled point on the map? 26. In what direction is the river at the center of the map flowing? 27. Put a small star on the map where the slope is the steepest. 28. Put a small triangle on the map where the slope is the flattest. 29. Is point K in a valley or a ridge? 30. Is point L in a valley or a ridge? 31. What is the distance from point A to point F, to the nearest tenth of a kilometer? 32. What is the distance from point H to point D, to the nearest tenth of a kilometer? 33. What is the distance from point B to point E, to the nearest tenth of a kilometer? 34. What is the distance from Goodnight Peak to point L, to the nearest tenth of a kilometer?

35. If you could travel in time and visit the park shown on the map 100,000 years in the future, what changes do you think will have taken place to the elevations of Goodnight Peak and Brushy Butte? Explain your answer.