Homotopy Perturbation Method for Solving Partial Differential Equations

Similar documents
SOLUTION OF TROESCH S PROBLEM USING HE S POLYNOMIALS

Variation of Parameters Method for Solving Fifth-Order. Boundary Value Problems

VARIATION OF PARAMETERS METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS

EXP-FUNCTION METHOD FOR SOLVING HIGHER-ORDER BOUNDARY VALUE PROBLEMS

On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind

An Alternative Approach to Differential-Difference Equations Using the Variational Iteration Method

ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics

International Journal of Modern Mathematical Sciences, 2012, 3(2): International Journal of Modern Mathematical Sciences

The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized

New Iterative Method for Time-Fractional Schrödinger Equations

Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations

Keywords: Exp-function method; solitary wave solutions; modified Camassa-Holm

The variational homotopy perturbation method for solving the K(2,2)equations

New Travelling Wave Solutions of Burgers Equation with Finite Transport Memory

Application of Homotopy Perturbation and Modified Adomian Decomposition Methods for Higher Order Boundary Value Problems

A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems

Homotopy Analysis Method for Nonlinear Differential Equations with Fractional Orders

Homotopy Perturbation Method for Solving the Second Kind of Non-Linear Integral Equations. 1 Introduction and Preliminary Notes

Application of Laplace Adomian Decomposition Method for the soliton solutions of Boussinesq-Burger equations

Application of the Decomposition Method of Adomian for Solving

An Analytic Study of the (2 + 1)-Dimensional Potential Kadomtsev-Petviashvili Equation

Analysis of Fractional Nonlinear Differential Equations Using the Homotopy Perturbation Method

On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method

New Approach of ( Ǵ/G ) Expansion Method. Applications to KdV Equation

On the coupling of Homotopy perturbation method and Laplace transformation

A New Technique of Initial Boundary Value Problems. Using Adomian Decomposition Method

The Existence of Noise Terms for Systems of Partial Differential and Integral Equations with ( HPM ) Method

The Homotopy Perturbation Method (HPM) for Nonlinear Parabolic Equation with Nonlocal Boundary Conditions

Exact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method

Homotopy perturbation method for the Wu-Zhang equation in fluid dynamics

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method

Homotopy Analysis Transform Method for Time-fractional Schrödinger Equations

Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method

He s Homotopy Perturbation Method for Nonlinear Ferdholm Integro-Differential Equations Of Fractional Order

Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method

Long Time Dynamics of Forced Oscillations of the Korteweg-de Vries Equation Using Homotopy Perturbation Method

Variational Homotopy Perturbation Method for the Fisher s Equation

New Analytical Solutions For (3+1) Dimensional Kaup-Kupershmidt Equation

The method of successive approximations for exact solutions of Laplace equation and of heat-like and wave-like equations with variable coefficients

A New Numerical Scheme for Solving Systems of Integro-Differential Equations

The Modified (G /G)-Expansion Method for Nonlinear Evolution Equations

Solving a class of linear and non-linear optimal control problems by homotopy perturbation method

An efficient algorithm on timefractional. equations with variable coefficients. Research Article OPEN ACCESS. Jamshad Ahmad*, Syed Tauseef Mohyud-Din

The comparison of optimal homotopy asymptotic method and homotopy perturbation method to solve Fisher equation

Abdolamir Karbalaie 1, Hamed Hamid Muhammed 2, Maryam Shabani 3 Mohammad Mehdi Montazeri 4

Analytical solution for determination the control parameter in the inverse parabolic equation using HAM

Variational iteration method for solving multispecies Lotka Volterra equations

Comparison of Optimal Homotopy Asymptotic Method with Homotopy Perturbation Method of Twelfth Order Boundary Value Problems

Solution of Fractional Diffusion Equation with a Moving Boundary Condition by Variational Iteration Method and Adomian Decomposition Method

A highly accurate method to solve Fisher s equation

SOLUTIONS OF FRACTIONAL DIFFUSION EQUATIONS BY VARIATION OF PARAMETERS METHOD

New Application of the (G /G)-Expansion Method to Excite Soliton Structures for Nonlinear Equation

Homotopy perturbation and Elzaki transform for solving Sine-Gorden and Klein-Gorden equations

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method

On Solutions of the Nonlinear Oscillators by Modified Homotopy Perturbation Method

Computers and Mathematics with Applications

Variational Iteration Method for Solving Nonlinear Coupled Equations in 2-Dimensional Space in Fluid Mechanics

Application of Variational Iteration Method to a General Riccati Equation

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013)

The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients

Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation

Numerical Solution of the (2+1)-Dimensional Boussinesq Equation with Initial Condition by Homotopy Perturbation Method

Maejo International Journal of Science and Technology

HOMOTOPY ANALYSIS METHOD FOR SOLVING KDV EQUATIONS

Numerical Solution of 12 th Order Boundary Value Problems by Using Homotopy Perturbation Method

Solutions of the coupled system of Burgers equations and coupled Klein-Gordon equation by RDT Method

HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION. 1. Introduction

NEW PERIODIC WAVE SOLUTIONS OF (3+1)-DIMENSIONAL SOLITON EQUATION

Variational iteration method for fractional heat- and wave-like equations

Modified Simple Equation Method and its Applications for some Nonlinear Evolution Equations in Mathematical Physics

Research Article A New Method for Riccati Differential Equations Based on Reproducing Kernel and Quasilinearization Methods

The (2+1) and (3+1)-Dimensional CBS Equations: Multiple Soliton Solutions and Multiple Singular Soliton Solutions

A Variational Iterative Method for Solving the Linear and Nonlinear Klein-Gordon Equations

SOLVING THE KLEIN-GORDON EQUATIONS VIA DIFFERENTIAL TRANSFORM METHOD

An efficient algorithm for computation of solitary wave solutions to nonlinear differential equations

Solution of Linear and Nonlinear Schrodinger Equations by Combine Elzaki Transform and Homotopy Perturbation Method

HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION. 1. Introduction

3. Solving wave and wave-like equations by TAM

Numerical Simulation of the Generalized Hirota-Satsuma Coupled KdV Equations by Variational Iteration Method

Multiple-Soliton Solutions for Extended Shallow Water Wave Equations

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method

Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction

EXACT TRAVELING WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING THE IMPROVED (G /G) EXPANSION METHOD

The (G'/G) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics

Approximate Solutions for Conservative Nonlinear Oscillators by He s Homotopy Method

Applications Of Differential Transform Method To Integral Equations

Application of new iterative transform method and modified fractional homotopy analysis transform method for fractional Fornberg-Whitham equation

Rational Energy Balance Method to Nonlinear Oscillators with Cubic Term

Exact Solutions of Fractional-Order Biological Population Model

Available online at J. Math. Comput. Sci. 2 (2012), No. 1, ISSN:

SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD

Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate

2. The generalized Benjamin- Bona-Mahony (BBM) equation with variable coefficients [30]

Variational Iteration Method for a Class of Nonlinear Differential Equations

Adomian Decomposition Method (ADM) for Nonlinear Wave-like Equations with Variable Coefficient

A remark on a variable-coefficient Bernoulli equation based on auxiliary -equation method for nonlinear physical systems

Splitting methods with boundary corrections

The Modified Variational Iteration Method for Solving Linear and Nonlinear Ordinary Differential Equations

Transcription:

Homotopy Perturbation Method for Solving Partial Differential Equations Syed Tauseef Mohyud-Din and Muhammad Aslam Noor Department of Mathematics COMSATS Institute of Information Technology Islamabad Pakistan Reprint requests to S T M-D; E-mail: syedtauseefs@hotmailcom Z Naturforsch 64a 57 7 9; received June 9 8 We apply a relatively new technique which is called the homotopy perturbation method HPM for solving linear and nonlinear partial differential equations The suggested algorithm is quite efficient and is practically well suited for use in these problems The proposed iterative scheme finds the solution without any discretization linearization or restrictive assumptions Several eamples are given to verify the reliability and efficiency of the method The fact that the HPM solves nonlinear problems without using Adomian s polynomials can be considered as a clear advantage of this technique over the decomposition method Key words: Homotopy Perturbation Method; Partial Differential Equations; Helmholtz Equations; Fisher s Equations; Initial Boundary Value Problems; Boussinesq Equations Introduction In the last two decades with the rapid development of nonlinear science there has appeared everincreasing interest of physicists and engineers in the analytical techniques for nonlinear problems It is well known that perturbation methods provide the most versatile tools available in nonlinear analysis of engineering problems see [ 9] and the references therein The perturbation methods like other nonlinear analytical techniques have their own limitations At first almost all perturbation methods are based on the assumption that a small parameter must eist in the equation This so-called small parameter assumption greatly restricts applications of perturbation techniques As is well known an overwhelming majority of nonlinear problems have no small parameters at all Secondly the determination of small parameters seems to be a special art requiring special techniques An appropriate choice of small parameters leads to the ideal results but an unsuitable choice may create serious problems Furthermore the approimate solutions solved by perturbation methods are valid in most cases only for the small values of the parameters It is obvious that all these limitations come from the small parameter assumption These facts have motivated to suggest alternate techniques such as variational iteration [8 5 8 3] decomposition [33 39] epfunction [4 4] variation of parameters [4] and iter- ative [43 44] In order to overcome these drawbacks combining the standard homotopy and perturbation method which is called the homotopy perturbation modifies the homotopy method Many problems in natural and engineering sciences are modeled by partial differential equations PDEs These equations arise in a number of scientific models such as the propagation of shallow water waves long wave and chemical reaction-diffusion models see [4 5 3 4 45 65] and the references therein A substantial amount of work has been invested for solving such models Several techniques including the method of characteristic Riemann invariants combination of waveform relaation and multi-grid periodic multi-grid wave form variational iteration homotopy perturbation and Adomian s decomposition [4 5 3 4 45 65] have been used for the solutions of such problems Most of these techniques encounter the inbuilt deficiencies and involve huge computational work He [3 8] developed the homotopy perturbation method for solving linear nonlinear initial and boundary value problems by merging two techniques the standard homotopy and the perturbation technique The homotopy perturbation method was formulated by taking the full advantage of the standard homotopy and perturbation methods and has been applied to a wide class of functional equations see [ 9] and the references therein The basic motivation of the present paper is the implementation of 93 784 / 9 / 3 57 $ 6 c 9 Verlag der Zeitschrift für Naturforschung Tübingen http://znaturforschcom

58 S T Mohyud-Din and M A Noor The HPM for Solving Partial Differential Equations this reliable technique for solving PDEs In particular the proposed homotopy perturbation method HPM is tested on Helmholtz Fisher s Boussinesq singular fourth-order partial differential equations systems of partial differential equations and higher-dimensional initial boundary value problems The proposed iterative scheme finds the solution without any discretization linearization or restrictive assumptions and is free from round off errors The HPM gives the solution in the form of a convergent series with easily computable components Unlike the method of separation of variables which requires both initial and boundary conditions the HPM gives the solution by using the initial conditions only The fact that the proposed HPM solves nonlinear problems without using Adomian s polynomials can be considered as a clear advantage of this technique over the decomposition method The Homotopy Perturbation Method To eplain the HPM we consider a general equation of the type Lu= where L is any integral or differential operator We define a conve homotopy Hu p by Hu p= pfuplu where Fu is a functional operator with known solutions v which can be obtained easily It is clear that for we have Hu p= 3 Hu =Fu Hu =Lu This shows that Hu p continuously traces an implicitly defined curve from a starting point H v to a solution function H f The embedding parameter monotonically increases from zero to unity as the trivial problem Fu= continuously deforms the original problem Lu= The embedding parameter p ] can be considered as an epanding parameter [ 9] The HPM uses the homotopy parameter p as an epanding parameter [3 8] to obtain u = i= p i u i = u pu p u p 3 u 3 4 If p then 4 corresponds to and becomes the approimate solution of the form f = lim u = p i= u i = u u u 5 It is well known that series 5 is convergent for most of the cases and also the rate of convergence is dependent on Lu For more details about the convergence of the HPM see [ 9] and the references therein The comparisons of equal powers of p give solutions of various orders In sum according to [ ] He s HPM considers the solution u of the homotopy equation in a series of p as u= i= p i u i = u pu p u and the method considers the nonlinear term Nu as Nu= i= p i H i = H ph p H where H n are the so-called He s polynomials [ ] which can be calculated by using the formula H n u u n = n n n! p n N p i u i i= p= n = 3 Numerical Applications In this section we apply the HPM for solving PDEs In particular the proposed HPM is tested on Helmholtz Fisher s Boussinesq singular fourth-order partial differential equations systems of partial differential equations and higher-dimensional initial boundary value problems Numerical results are very encouraging 3 Eample Consider the Helmholtz equation [44] u uy y uy= with the initial conditions uy=y u y=y coshy

S T Mohyud-Din and M A Noor The HPM for Solving Partial Differential Equations 59 y Eact solution HPM ITM Absolute error 99676 9974799 9974799 777 8 8 4948 4959 4959 638 6 6 45663 45333 45333 3578 4 4 7556967 755485 755485 5 367755 367759484 367759484 7 448939 44893884 44893884 8 4 4 95888 95645 95645 43 6 6 84554 845793 845793 448 8 8 85387 85549 85549 38 4636463 45974799 45974799 6564 Table Error estimates u u p u = p u pu p u u p y u y p u y p : u y=y coshy p : u y=! y 3! 3 y p : u y= 4! 4 y 5! 5 y p 3 : u 3 y= 6! 6 y 7! 7 y p 4 : u 4 y= 8! 8 y 9! 9 y gives the solution as uy=yepcoshy Table ehibits the approimate solution obtained by using the HPM and ITM It is clear that the obtained results are in high agreement with those obtained using the eact solutions Higher accuracy can be obtained by using more terms 3 Eample Consider the Helmholtz equation [44] uy uy y 8uy= with the initial conditions uy=siny u y= u u p u = [ p 8 u pu p u ] u y u y p u y p : u y=siny p : u y= siny p : u y= 8 3 4 siny p 3 : u 3 y= 4 45 6 siny gives the series solution as u y=siny 3 4 4 45 6 and in the closed form as u y =cos siny Table ehibits the approimate solution obtained by using the HPM and ITM [5] It is clear that the obtained results are in high agreement with those obtained using the eact solutions Higher accuracy can be obtained by using more terms

6 S T Mohyud-Din and M A Noor The HPM for Solving Partial Differential Equations y Eact solution HPM ITM Absolute error 94797 9453593 9453593 76577 35867845 35867845 35867845 3 3 4669543 4669543 4669543 4 4 4997868 49978683 49978683 5 5 45464873 454648957 454648957 44 6 6 3377359 3377333 3377333 64 7 7 6749475 675984 675984 799 8 8 9877 95749 95749 958 9 9 6 795 795 8996 378447 3787363 3787363 884 Table Error estimates 33 Eample 3 Consider the Fisher s equation of the form u t t u t ut ut = subject to the initial conditions u=β This Fisher s problem can be formulated as the integral equation ut=β u tut utdt u pu p u = u β p u p u u pu p u u pu p u dt p : u y=β p : u y=β β t p : u y= t! β 3β β t3 3 β β p 3 : u 3 y= t3 3! β 6β β 3 5β 4 t4 3 β β β t5 6 β β 3 β β t6 8 β 3 β 3 β t7 63 β 4 β 4 Table 3 Numerical results for Fisher s equation t β = β = 8 69E-6 9647E-6 557339E-6 6375E-6 4 3635E-4 6E-5 337E-4 4783E-5 6 54555E-4 5333E-4 447E-4 63379E-4 8 785E-3 54998E-4 8584E-3 934E-4 445699E-3 45544E-4 995E-3 6455E-5 gives the solution in a closed form: ut= β ept β β ept Table 3 shows the numerical results 34 Eample 4 Consider the Fisher s equation of the form u t u 6u u= subject to the initial conditions u= e This Fisher s problem can be formulated as the integral equation t ut= e u 6u udt u pu p u = e p u u p u 6u pu p u u pu p u dt

S T Mohyud-Din and M A Noor The HPM for Solving Partial Differential Equations 6 Table 4 Numerical results for Fisher s equation t = t = 4 7E-3 6996E-3 57598E- 5844E- 98949E-3 5566E-3 65E- 577E- 4 9765E- 3697E-3 393E- 47E- 6 439E- 73899E-4 5579E- 5459E- 8 8573E-3 573E-4 4359E- 58693E-3 587E-3 9777E-4 9333E- 4367E-3 p : u t= e p : u t= e t [ p : u t= e 6 5e e e t e t 3 e 3 e 6 ] e t p 3 : u 3 y= 5e 3 e 6 5 6e 5e e 3 t 3 5e e 8 7 5e 5e t 4 5e e 9 5 47e e 3 t 5 e3 e t 6 e 4e4 t 7 7 e [ 5e e 6 e e e t e t 3 e t ] gives the solution in a closed form: ut= ep 5t Table 4 shows the numerical results 35 Eample 5 Consider the generalized Fisher s equation u t = u u u 6 subject to the initial conditions u= e 3 3 This Fisher s problem can be formulated as the integral equation ut= t e 3 p u u u 6 dt 3 u pu p u = p e 3 /3 u u p u u pu p u u pu p u 6 dt p : u t= e 3 /3 p : u t= 4 e3 4 3te 3/ 8 t 4 e 3/ 7/3 p : u t= [ 37 e 3/ 49/3 496e 3/ e 3/ 363 43e 3/ 9e 3 9e 9/ t 57344e 3 e 3/ 3e 3/ t 3 79e 9/ e 3/ 8 3e 3/ 3 t 4 3584e 6 e 3/ 6 3e 3/ 4 t 5 448e 5/ e 3/ 4 3e 3/ 5 t 6 448e 5/ e 3/ 4 3e 3/ 5 t 6 3e 9 e 3/ 3e 3/ 6 t 7 e / 3e 3/ 7 t 8 3768 e 3/ 4 ] 4 e 3 4 3te 3/ 8 t

6 S T Mohyud-Din and M A Noor The HPM for Solving Partial Differential Equations Table 5 Numerical results for the generalized Fisher s equation t = t = 4 5496E- 45437E- 845E- 97465E- 779547E- 4746E- 7494E- 839974E- 4 85E- 3376E- 347E- 93E-4 6 5375E- 9936E- 494354E- 463E- 8 996E- 538E-3 6747E- 463E- 5537E- 785833E-3 87889E- 4665E- gives the solution in a closed form: ut=/tanh[ 3/4 5/t] / /3 Table 5 shows the numerical results 36 Eample 6 Consider the singularly perturbed sith-order Boussinesq equation [4 5 3 33 4] u tt = u pu αu β u Taking α = β = and pu=3u the model equation is given as u tt = u 3u u with the initial conditions u= ak e k ae k u t = ak3 k ae k e k ae k 3 where a and k are arbitrary constants The eact solution ut of the problem is given as [33] ak epk k k ut= t aepk k k t u pu p u p 3 u 3 = ak e k ae k ak3 k ae k e k ae k 3 t u p u p u p [ 4 u 4 p 4 u 4 p 4 u 4 u 3 u p u dtdt ] dtdt p : u t= ek e p : u t= ak3 k ae k e k ae k 3 t e 4e e e 4 t p : u t= e e e e 3 e 5 t 3 e 4e e 44e 78e 44e 3 e 4 3 e 8 t 4 p 3 [ : u 3 t= e 5 e 7 e 56e 46e 56e 3 e 4 ] t 5 [ e 45 e 45e 949e 7936e 3 87378e 4 56568e 5 ] t 6 [ e 45 e 87378e 6 7936e 7 ] 949e 8 45e 9 e t 6 gives the series solution as ut= ek e ak3 k ae k e k ae k 3 t e 4e e e 4 t e e e e 3 e 5 t 3 e 4e e 44e 78e 44e 3 e 4 3 e 8 t 4 8e e e e 3 e 4 e 8 t 4 e e 56e 46e 56e 3 e 4 5 e 7 t 5 [ e 45 e 45e 949e 7936e 3 87378e 4 56568e 5 ] t 6 [ e 45 e 87378e 6 7936e 7 949e 8 45e 9 e ] t 6

S T Mohyud-Din and M A Noor The HPM for Solving Partial Differential Equations 63 i t j 4 5 8886 E-4 79667 E- 535 E- 83355 E-8 83899 E-6 47468 E-4 8 6776 E-4 436 E- 5747 E- 63378 E-8 4454 E-6 4489 E-3 6 684 E-4 3988 E- 5663 E- 684 E-8 499 E-6 393 E-3 4 6573 E-4 749 E-3 48756 E- 3843 E-8 8538 E-6 463 E-4 553446 E-4 353395 E- 5663 E- 547485 E-8 34764 E-6 835783 E-4 86398 E-4 553357 E- 5474 E- 86597 E-8 554893 E-6 37353 E-3 556 E-4 35544 E- 7779 E- 5636 E-8 3636 E-6 996 E-4 4 4353 E-4 7498 E-3 4497 E- 337 E-8 59384 E-7 966 E-5 6 668 E-4 38755 E- 478 E- 59756 E-8 37675 E-6 879 E-4 8 63945 E-4 39959 E- 557 E- 6888 E-8 39 E-6 93644 E-4 79776 E-4 78946 E- 437 E- 77684 E-8 7667 E-6 48986 E-4 Table 6 Error estimates Fig Series solution ut Table 6 ehibits the absolute error between the eact and the series solutions Higher accuracy can be obtained by introducing some more components of the series solution Figure depicts the series solution ut 37 Eample 7 Consider the singularly perturbed sith-order Boussinesq equation [4 5 3 33 4] u tt = u u u u with the initial conditions u= 5 69 sech4 6 tanh 94 3 sech4 6 6 u t = 97 The eact solution of the problem is given as [ ut= 5 ] 97 69 sech4 6 69 t u pu p u = 5 69 sech4 p p tanh 94 3 sech4 6 6 u 97 6 u p u [ u pu p u p 3 u 3 4 u 4 u p 4 4 p 4 u p ] 4 t dtdt 6 u 6 p 6 u 6 p 6 u 6 dtdt dtdt p : u = 5 69 sech4 6 sinh 94 5 p 3 sech6 6 : u t= 97 5 3793 9 94cosh 3 3 sech 6 t 6 p :u t= 395sech7 6 86 5sinh 5676644 6 664 5sinh 3 [ t 3 334sech 5 6 6 35447cosh sech 5 3 6 t

64 S T Mohyud-Din and M A Noor The HPM for Solving Partial Differential Equations i t j 4 5 77756 E-6 36557 E-4 857869 E-3 964 E- 3383 E-8 35944 E-6 8 E-6 9984 E-5 688 E-3 7388 E- 7488 E-9 4494 E-7 6 45 E-6 99 E-4 7886 E-3 783 E- 45 E-8 798 E-6 4 E-6 337 E-4 53 E- 367 E- 34944 E-8 5749 E-6 66634 E-6 3375 E-4 4747 E- 49998 E- 39983 E-9 7859 E-6 44489 E-6 3497 E-4 4365 E- 54774 E- 35559 E-8 855935 E-6 555 E-6 39744 E-4 474 E- 4998 E- 39858 E-8 78749 E-6 4 33367 E-6 337 E-4 534 E- 36685 E- 3476 E-8 5764 E-6 6 33367 E-6 33 E-4 7858 E- 7777 E- 3695 E-8 77 E-6 8 33367 E-6 9984 E-5 33 E-3 76944 E- 788 E-9 44936 E-7 77756 E-6 38778 E-4 85833 E-3 9593 E- 3444 E-8 3854 E-6 4764cosh sech 5 ]t 4 3 6 [ 3 3cosh 3 sech 5 3 6 4 388cosh sech 5 ]t 4 3 6 Table 7 Error estimates gives the series solution as ut= 5 69 sech4 6 sinh 94 5 3 sech6 6 3 t 5 3793 97 9 94cosh 3 sech 6 t 6 395sech7 6 86 5sinh 5676644 6 664 5sinh 3 [ t 3 334sech 5 6 6 35447cosh sech 5 3 6 4764cosh sech 5 ]t 4 3 6 [3cosh 3 3 sech 5 3 6 4 388cosh sech 5 ]t 4 3 6 Table 7 ehibits the absolute error between the eact and the series solutions Higher accuracy can be obtained by introducing some more components of the series solution Figure depicts the series solution ut Fig Series solution ut 38 Eample 8 Consider the following nonlinear system of partial differential equations: u t v w y v y w = u v t w u y w y u = v w t u v y u y v = w with the initial conditions uy=e y vy=e y wy=e y v u pu p u = e y p p v p v w y p w y w p y dt v p y p v y v p y w p w p w dt p t u pu p u dt

S T Mohyud-Din and M A Noor The HPM for Solving Partial Differential Equations 65 v pv p v = e y p p u y p u p w y w p w p w p u u p dt p u y p u y dt w y p w y v pv p v u dt w pw p w = e y p p u p u v y p v y v p y dt u p y p u y u p y v p v p v dt p w pw p w dt p : u yt=e y v yt=e y w yt=e y p : u yt= te y v yt=te y w yt=te y p : u yt= t! ey v yt= t! e y w yt= t! e y p 3 : u 3 yt= t3 3! ey v 3 yt= t3 3! e y w 3 yt= t3 3! e y gives the closed form solution as uvw=e y t e yt e yt 39 Eample 9 Consider the singular fourth-order parabolic equation u t 4 4 u 4 = < < t > subject to the initial conditions u = < < u 5 = t < < and the boundary conditions u t = /5 ut= u t = 6 sint sint t > 3 sint u t= sint t > 6 u pu p u = u t p 4 4 u 4 u p 4 4 p 4 u 4 dtdt p : u t= 5 t p : u t= 5 t 3 3! p : u t= 5 t 5 5! p 3 : u 3 t= 5 t 7 7!

66 S T Mohyud-Din and M A Noor The HPM for Solving Partial Differential Equations gives the solution as ut= 5 = 5 t t3 sint 3! t5 5! t7 7! which is the eact solution It is interesting to point out that the eact solution is obtained by using the initial conditions only Moreover the obtained solution can be used to justify the given boundary conditions 3 Eample Consider the following singular fourth-order parabolic partial differential equation in two space variables: u t 4 4 u 6! 4 y y4 4 u 6! y 4 = with the initial conditions uy= and the boundary conditions u 6 y= t 6! y6 6! u yt = 56 y6 sint 6! 6! u yt= y6 sint 6! 6! u yt = 54 4 sint u yt= 4 sint u y t = 54 4 sint u y t= 4 sint u pu p u = u t p p y y4 4 u 6! y 4 u p 4 y 4 p 4 u y 4 dtdt 4 4 u 4 u p 4 4 p 4 u 4 dtdt p : u t= 6 6! y6 t 6! p : u t= 6 6! y6 t3 6! 3! p : u t= 6 6! y6 t 5 6! 5! p 3 : u 3 t= 6 6! y6 t7 6! 7! p 4 : u 4 t= 6 6! y6 t 9 6! 9! gives the eact solution easily: u yt= t 6 6! y6 t3 6! = 6 6! y6 6! 3 Eample sint 3! t5 5! t7 7! t9 9! Consider the fourth-order singular parabolic partial differential equation u 4 t sin u = 4 < < t > with the initial conditions u= sin < < u = sin < < t

S T Mohyud-Din and M A Noor The HPM for Solving Partial Differential Equations 67 and the boundary conditions ut= ut=e t sin t > u t= u t=e t sin t > u pu p u = u t p sin 4 u 4 u p 4 4 p 4 u 4 dtdt p : u t= sin p : u t= sint t p : u t= sin! t3 3! t p 3 4 : u 3 t= sin 4! t5 5! t p 4 6 : u 4 t= sin 6! t7 7! t p 5 8 : u 5 t= sin 8! t9 9! gives the solution as ut= sin t t! t3 3! t4 4! t5 5! = sine t which is the eact solution It satisfies the boundary conditions also that we did not use in the analysis 3 Eample Consider the two-dimensional initial boundary value problem u tt = y u u yy < y < t > with the boundary conditions uyt=y e t uyt= y e t ut=y e t ut= e t and the initial conditions uy= y u t y= y u pu p u = y y t p y u u u dtdt p u y u y u y dtdt p : u yt= y y t p : u yt= y t! y t3 3! p : u yt= y t4 4! y t5 5! p 3 : u 3 yt= y t5 5! y t7 7! p 4 : u 4 yt= y t8 8! y t9 9! p 5 : u 5 yt= y t! y t! gives the series solution as uyt= y t t! t3 3! t4 4! t5 5! and in a closed form as uyt= y e t which is in full agreement with [] 33 Eample 3 t6 6! t7 7! t8 8! Consider the three-dimensional initial boundary value problem u tt = 45 u 45 y u yy 45 z u zz u < y < t <

68 S T Mohyud-Din and M A Noor The HPM for Solving Partial Differential Equations subject to the Neumann boundary conditions u yzt= u yzt=6y 6 z 6 sinht u y zt= u y zt=6 6 z 6 sinht u z yt= u z yt=6 6 y 6 sinht and the initial conditions uyz= u t yz= 6 y 6 z 6 u pu p u = 6 y 6 z 6 t 45 p u u u dtdt 45 p y u y u y u y z u z u z u z dtdt p u pu p u dtdt p : u yzt= 6 y 6 z 6 t p : u yzt= 6 y 6 z 6 t3 3! p : u yzt= 6 y 6 z 6 t5 5! p 3 : u 3 yzt= 6 y 6 z 6 t7 7! p 4 : u 4 yzt= 6 y 6 z 6 t9 9! gives the series solution as uyzt= 6 y 6 z 6 t t3 3! t5 5! t7 7! t9 9! = 6 y 6 z 6 sinht 34 Eample 4 Consider the two-dimensional nonlinear inhomogeneous initial boundary value problem u tt = y 5 u yu yy < y < t > with the boundary conditions uyt=y t yt 6 uyt= y t yt 6 ut= t t 6 ut= t t 6 and the initial conditions uy= u t y= [ ũ u pu p u = p p ũ ũ y y ũ y y ] dtdt ũ p ũ y p : u yt= p : u yt= y t p : u yt= yt 6 p 3 : u 3 yt= gives the solution as uyt= y t yt 6 which is in full agreement with [] 35 Eample 5 Consider the three-dimensional nonlinear initial boundary value problem u tt = t u e u e y u yy e z u zz < y < t <

S T Mohyud-Din and M A Noor The HPM for Solving Partial Differential Equations 69 subject to the Neumann boundary conditions u yzt= u y zt= u z yt= and the initial conditions uyz=e e y e z u t yz= u yzt=e u y zt=e u z yt=e u pu p u =e e y e z [ e u p u p u ] t dtdt p p u y e z u ] dtdt p [ e y u y u y z u z p u z u pu p u dtdt p : u yzt=e e y e z t t4 p : u yzt= t4 t6 36 [] A Ghorbani and J S Nadjfi Int J Nonlinear Sci Numer Simul 8 9 7 [] A Ghorbani Chaos Solitons and Fractals 7 in press [3] J H He Phys Lett A 35 87 6 [4] J H He Appl Math Comput 56 57 4 [5] J H He Int J Nonlinear Sci Numer Simul 6 7 5 [6] J H He Appl Math Comput 5 87 4 [7] J H He Int J Nonlinear Mech 35 5 [8] J H He Int J Mod Phys 44 6 [9] S T Mohyud-Din and M A Noor Math Prob Eng 7 [] M A Noor and S T Mohyud-Din Math Comput Modl 45 954 7 p : u yzt= t6 36 t8 6 gives the solution as uyzt=e e y e z t 4 Conclusions We applied the homotopy perturbation method HPM for finding the solution of a system of partial differential equations The method is applied in a direct way without using linearization transformation discretization or restrictive assumptions It may be concluded that the HPM is very powerful and efficient in finding the analytical solutions for a wide class of boundary value problems The method gives more realistic series solutions that converge very rapidly in physical problems It is worth mentioning that the method is capable of reducing the volume of the computational work as compared to the classical methods while still maintaining the high accuracy of the numerical result The fact that the HPM solves nonlinear problems without using the Adomian s polynomials is a clear advantage of this technique over the decomposition method Acknowledgement The authors are highly grateful to Dr S M Junaid Zaidi Rector CIIT for providing an ecellent research environment and facilities [] M A Noor and S T Mohyud-Din Comput Math Appl 55 953 8 [] M A Noor and S T Mohyud-Din J Math Anal Appl Th 6 6 [3] M A Noor and S T Mohyud-Din Int J Math Comput Sci 345 7 [4] M A Noor and S T Mohyud-Din Int J Mod Math 8 in press [5] M A Noor and S T Mohyud-Din Int J Nonlinear Sci Numer Simul 9 4 8 [6] M A Noor and S T Mohyud-Din Math Prob Eng 8 in press [7] M A Noor and S T Mohyud-Din Comput Math Appl 8 in press

7 S T Mohyud-Din and M A Noor The HPM for Solving Partial Differential Equations [8] M A Noor and S T Mohyud-Din J Appl Math Comput 9 8 9 [9] L Xu Comput Math Appl 54 67 7 [] S Abbasbandy J Comput Appl Math 7 59 7 [] M A Abdou and A A Soliman Physica D 5 [] J H He J Comput Appl Math 7 3 7 [3] J H He and X Wu Comput Math Appl 54 88 7 [4] J H He Int J Nonlinear Mech 34 699 999 [5] J H He Phys Scr 76 68 7 [6] S T Mohyud-Din J Appl Math Comput 8 in press [7] S T Mohyud-Din A reliable algorithm for Blasius equation Proceedings of the International Conference on Mathematical Sciences Selangor Malaysia 7 pp 66 66 [8] M A Noor and S T Mohyud-Din Appl Math Comput 89 99 7 [9] M A Noor and S T Mohyud-Din Comput Math Appl 54 7 [3] M A Noor and S T Mohyud-Din J Appl Math Comput 8 in press [3] M A Noor S T Mohyud-Din and M Tahir Diff Eqns Nonlin Mech 7 in press [3] M A Noor and S T Mohyud-Din Int J Appl Math Eng Sci 8 in press [33] M A Haji and K Al-Khaled Appl Math Comput 9 3 7 [34] A M Wazwaz and A Gorguis Appl Math Comput 47 69 4 [35] A M Wazwaz Chaos Solitons and Fractals 549 [36] A M Wazwaz Comput Math Appl 54 933 7 [37] A M Wazwaz Comput Math Appl 54 895 9 7 [38] A M Wazwaz Appl Math Comput 3 9 [39] A M Wazwaz Int J Comput Math 76 59 999 [4] M A Noor S T Mohyud-Din and A Waheed J Appl Math Comput 9 8 [4] M A Noor S T Mohyud-Din and A Waheed Acta Applnda Mathmtce 8 in press [4] M A Noor S T Mohyud-Din and A Waheed Appl Math Inf Sci 35 8 [43] M A Noor K I Noor S T Mohyud-Din and A Shabir Appl Math Comput 83 49 6 [44] M A Noor and S T Mohyud-Din J Math Math Sci 9 7 [45] S D Conte J Assoc Comput Mach 4 957 [46] S D Conte and W C Royster Pro Am Math Soc 7 74 956 [47] L Debnath Nonlinear Partial Differential Equations for Scientists and Engineers Birkhauser Boston 997 [48] D J Evans Comput J 8 8 965 [49] D J Evans and W S Yousef Int J Comput Math 4 93 99 [5] L Edelstein-Keshet Mathematical Models in Biology McGraw-Hill New York 987 [5] S M El-Sayad and D Kaya Appl Math Comput 57 53 4 [5] S M El-Sayed and D Kaya Appl Math Comput 5 763 4 [53] Z Feng Wave Motion 37 7 3 [54] S Iyanaga and Y Kawada Encyclopedia Dictionary of Mathematics MIT Press Cambridge MA 96 [55] T Kawahara and M Tanaka Phys Lett A 97 3 983 [56] J D Logan An Introduction to Nonlinear Partial Differential Equations Wiley-Interscience New York 994 [57] C Lubich and A Ostermann BIT 7 6 987 [58] A R Manwell The Tricomi Equations with Applications to the Theory of Plane Transonic Flow Pitman London UK 979 [59] J W Miller SIAM J Math Anal 4 34 973 [6] J D Murray Mathematical Biology Springer-Verlag Berlin 989 [6] W Malfliet Am J Phys 6 3 99 [6] R E Mickens Comput Math Appl 45 49 3 [63] J Smollet Shock Waves and Reaction Diffusion Equations Springer-Verlag New York 983 [64] S Vandewalle and R Piessens Appl Numer Math 8 49 99 [65] X Y Wang Phys Lett A 3 77 988