Institute de Physique du Globe, Paris, France. Summary

Similar documents
P- and S-Wave Velocity Measurements and Pressure Sensitivity Analysis of AVA Response

University of Alberta. Library Release Form

Seismic behaviour of CO 2 saturated Fontainebleau sandstone under in situ conditions

CO 2 Rock Physics: A Laboratory Study

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity

Laboratory Approach to the Study of Elastic Anisotropy on Rock Samples

Investigations of Seismic Signatures of CO 2 Saturation as Part of a Geological Storage Project

Textures in experimentally deformed olivine aggregates: the effects of added water and melt.

6298 Stress induced azimuthally anisotropic reservoir - AVO modeling

Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story

Shear-wave propagation in rocks and other lossy media: An experimental study

Seismic Anisotropy and Mantle Flow in the Izu-Bonin-Mariana Subduction System

Laboratory experiments and numerical simulation on Bitumen Saturated Carbonates: A Rock Physics Study for 4D Seismology

THE EFFECT OF CEMENTATION ON THE SEISMIC PROPERTIES OF SANDSTONE:

Kentaro OMURA. Solid Earth Research Group, National Research Institute for Earth Science and Disaster Prevention, Japan

Acoustic Anisotropy Measurements and Interpretation in Deviated Wells

Seismic techniques for imaging fractures, cracks and faults in the Earth. Michael Kendall

Some aspects of seismic tomography

SEISMIC WAVE PROPAGATION IN FRACTURED CARBONATE ROCK

An empirical method for estimation of anisotropic parameters in clastic rocks

Author's Personal Copy

Salt anisotropy: Ultrasonic lab experiments and traveltime ramifications Jingjing Zong *, Robert Stewart and Nikolay Dyaur University of Houston

Phase and group velocity measurements from physically modeled transmission gathers

Laboratory Measurements of P-wave and S-wave Anisotropy in Synthetic Sandstones with Controlled Fracture Density

Shear Wave Velocity Estimation Utilizing Wireline Logs for a Carbonate Reservoir, South-West Iran

Laboratory Triaxial and Permeability Tests on Tournemire Shale and Cobourg Limestone (Contract : R413.8) FINAL REPORT

Laboratory measurements of elastic anisotropy parameters for the exposed crustal rocks from the Hidaka Metamorphic Belt, Central Hokkaido, Japan

Velocity Measurements of Pore Fluids at Pressure and Temperature: Application to bitumen

Introduction to Seismology Spring 2008

Investigating Causes of D Anisotropy

Workflows for Sweet Spots Identification in Shale Plays Using Seismic Inversion and Well Logs

P314 Anisotropic Elastic Modelling for Organic Shales

Towards Modelling Elastic and Viscoelastic Seismic Wave Propagation in Boreholes

EVALUATION OF DAMAGES DUE TO ALKALI-SILICA REACTION WITH ACOUSTICS TECHNIQUES. DEVELOPMENT OF A NEW NONLINEAR METHOD.

Seismic inversion for the parameters of two orthogonal fracture sets in a VTI background medium

The Earth s Structure from Travel Times

Summary. Introduction

The Hangingstone steam-assisted gravity drainage

SUMMARY INTRODUCTION EXPERIMENTAL PROCEDURE

LECTURE NO. 4-5 INTRODUCTION ULTRASONIC * PULSE VELOCITY METHODS

Seismic Velocity Dispersion and the Petrophysical Properties of Porous Media

Rock Physics Facilities and Research in the Experimental Geophysics Group at the University of Alberta

Hydrogeophysics - Seismics

Anisotropy of Shale Properties: A Multi-Scale and Multi-Physics Characterization

Borehole Acoustics and Logging Consortium. Annual Report

Effects of Fracture Parameters in an Anisotropy Model on P-Wave Azimuthal Amplitude Responses

Development and application of time-lapse ultrasonic tomography for laboratory characterisation of localised deformation in hard soils / soft rocks

Modeling seismic wave propagation during fluid injection in a fractured network: Effects of pore fluid pressure on time-lapse seismic signatures

SEG Houston 2009 International Exposition and Annual Meeting

Estimation of fractured weaknesses and attenuation factors from azimuthal seismic data

Numerical study on scanning radiation acoustic field in formations generated from a borehole

Tracing rays through the Earth

Geosciences and Engineering, Vol. 5, No. 8 (2016), pp

Auxiliary Material. Subduction of oceanic asthenosphere: evidence from sub-slab seismic anisotropy. Teh-Ru Alex Song, Hitoshi Kawakatsu

A Study of Permeability and Velocity Anisotropy in Carbonates

What does Seismic Anisotropy tell us about the Lithosphere-Asthenosphere Boundary?

Stress-induced transverse isotropy in rocks

Borehole Geophysics. Acoustic logging measurements

Seismic anisotropy in coal beds David Gray Veritas, Calgary, Canada

SUBSURFACE WAVES IN SOLIDS WITH CURVED SURFACE AND ACOUSTICAL IMPEDANCE ON IT

Snell s law in transversely isotropic media using linearized group velocities and related quantities

Sources and Measurement of Velocity Anisotropy of Cambay Shale, Cambay Basin, India

Attenuation and dispersion

Global geophysics and wave propagation

Global surface-wave tomography

ROCK PHYSICS DIAGNOSTICS OF NORTH SEA SANDS: LINK BETWEEN MICROSTRUCTURE AND SEISMIC PROPERTIES ABSTRACT

Tu P8 08 Modified Anisotropic Walton Model for Consolidated Siliciclastic Rocks: Case Study of Velocity Anisotropy Modelling in a Barents Sea Well

LECTURE 5 - Wave Equation Hrvoje Tkalčić " 2 # & 2 #

Stress Damage in Borehole and Rock Cores; Developing New Tools to Update the Stress Map of Alberta

On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar

Estimating Permeability from Acoustic Velocity and Formation Resistivity Factor

Cracked media, Poisson s ratio and the structure of the upper oceanic crust

Lamb Wave Behavior in Bridge Girder Geometries

INTERFACE WAVES ALONG FRACTURES IN TRANSVERSELY ISOTROPIC MEDIA

Attenuation and dispersion

Stress associated coda attenuation from ultrasonic waveform measurements

Waveform search for the innermost inner core

P235 Modelling Anisotropy for Improved Velocities, Synthetics and Well Ties

Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad*

Summary. Simple model for kerogen maturity (Carcione, 2000)

A Case Study on Simulation of Seismic Reflections for 4C Ocean Bottom Seismometer Data in Anisotropic Media Using Gas Hydrate Model

Robert W. Vestrum and R. James Brown

SHEAR SPECIFIC STIFFNESS OF FRACTURES AND FRACTURE INTERSECTIONS

Linking the Chemical and Physical Effects of CO 2 Injection to Geophysical Parameters

7.2.1 Seismic waves. Waves in a mass- spring system

Subduction of the Chile Ridge: Upper Mantle Structure and Flow

Lecture notes Bill Engstrom: Instructor Earth s Interior GLG 101 Physical Geology

NMO residual reduction on medium anisotropy in field X using Fomel and Stovas method

AVAZ inversion for fracture orientation and intensity: a physical modeling study

PUBLICATIONS. Journal of Geophysical Research: Solid Earth. Seismic anisotropy of serpentinite from Val Malenco, Italy

LINK BETWEEN ATTENUATION AND VELOCITY DISPERSION

Evaluation Of The Fracture Sizes By Using The Frequency Dependence Of Anisotropy

Envelope of Fracture Density

Interpretation of baseline surface seismic data at the Violet Grove CO 2 injection site, Alberta

Earthquakes. Earthquakes are caused by a sudden release of energy

The Deconvolution of Multicomponent Trace Vectors

Earth s Interior Earth - Chapter 12 Stan Hatfield Southwestern Illinois College

Crosswell tomography imaging of the permeability structure within a sandstone oil field.

FRACTURE REORIENTATION IN HORIZONTAL WELL WITH MULTISTAGE HYDRAULIC FRACTURING

THE ROCK PHYSICS HANDBOOK

Transcription:

Laboratory determination of velocity anisotropy Jason Z. Han, Douglas R. Schmitt, Daniel Collis a, and Javier Escartin b a Institute for Geophysical Research, Department of Physics, University of Alberta, Edmonton, Canada b Institute de Physique du Globe, Paris, France Summary Over the past decade technological advances have brought us the capacity to acquire and process high-resolution seismic data in seismic exploration. The physical properties of crust rocks are anisotropic to some extent as demonstrated by data from seismic studies, borehole logs and laboratory. In fact, anisotropy is a fundamental property of rocks. But, our understanding of the anisotropic properties of many rocks is still limited. Consideration of anisotropy in seismic analysis and processing will improve their resolution. So, it is important to understand the intrinsic properties of the rocks through which the seismic waves pass. This study describes a set of ultrasonic laboratory techniques to measure and calculate the P and S wave velocity and anisotropy. The relationship between wave velocities and anisotropy and their directional dependence at pressure are displayed. In the particular material studies, the P and S wave velocities exhibit a weak anisotropy causing by marked micro-crack network and the lattice preferred orientation (LPO) of the minerals in the sample. Optical microscopy study shows a micro-cracks network was created and guided in the petrogenetic and metamorphic processes. Experiment and Measurement In a rock core with axially aligned cracks or other intrinsic anisotropy, the compressional waves travel fastest parallel to the dominant crack plane and slowest perpendicular to this orientation. Also, the shear wave velocities will vary with azimuth, because polarized shear waves will encounter the crack array in all orientations. The Rock Physics Laboratory has developed a Velocity Anisotropy Measurement System that can make high-resolution measurements of many velocity components over the complete volume of rock cores. There are a number of high speed digital oscilloscopes that are used primarily in ultrasonic measurements of P-wave and S-wave speeds through materials under pressures as great as 300 MPa and at different temperatures. As well, ultrasonic transducers were developed for use in detailed elastic wave anisotropy studies to more fundamental porous media measurements. Figure 1. The method of mutually orthogonal plugs for measuring velocity and anisotropy (After Cholach and Schmitt, 2004) Great Explorations Canada and Beyond 1

In this example study, P- wave and S- wave measurements were made on cylindrical cores (2.54 cm diameter 3.5 to 5.5 cm length). The sample plugs were drilled at the mutually orthogonal directions as illustrated in Figure 1, along one of the three axes of symmetry. The cores were drilled from the rock specimen in directions with respect to visible textural feature. Each specimen has one cut perpendicular to foliation plane and at least one core parallel to the foliation plane. In the case of visible lineation direction two cores were cut within the foliation plane, parallel and perpendicular to the lineation direction. If possible, additional cores were cut in the same direction to investigate the heterogeneity within a given specimen. The ends of these cores were flattened parallel using a surface grinder. After cutting and flattening, the cores were dried in the vacuum oven for over 6 hours at a temperature 80 0 C. Mass densities were obtained by the Archimedean displacement method to an uncertainty of better than ± 0.5 %. The variations in density between cores obtained from the same specimen are generally less than 1%, indicating a consistency of the mineral composition within a given sample. The porosities of the samples were not determined but typically less than 1 % at room temperature and pressure. The fact that the submerged masses of these samples did not appreciably change during the density measurement is indicative of low permeability and porosity. The macrostructure and composition of samples were identified by thin sections. Further, SEM photos and X- ray diffraction were used to investigate the microstructure and composition of the rock and minerals. Photomicrography from the thin sections perpendicular and parallel to the foliation illustrating the microstructure are shown in Figure 2. Normal to the foliation plane Parallel to the foliation plane Figure 2. Photomicrographs from the different directions illustrate the various rock fabrics. The laboratory velocity measurements were carried out using a pulse transmission technique (e.g., Kern, 1982). Transmitting and receiving transducers were mounted at the opposing ends of the cylindrical samples. P- wave and two S-wave measurements were made on all the cores in longitudinal mode. The piezoelectric ceramics (2.54 cm diameter, 1-MHz frequency, P- wave transducers or 18 18 mm size, 1-MHz frequency, S- wave transducers) were placed at both ends of the cores for the P- and S- wave measurements, respectively. The S- wave ceramics provide a mechanical pulse polarized parallel to the ends of the samples and care need to be taken to ensure that the polarization directions of both transverse mode ceramics were properly aligned to each other and appropriately oriented with respect to the rock s principal textural X, Y, Z axes. One or two sets of sample could be used for each run. Each sample requires 1 P- wave and at least two orthogonally oriented S- wave runs. The piezoelectric ceramics were mechanically damped in order to broaden the overall transducer bandwidth. The attached ceramic transducer and rock sample were then hermetically sealed to exclude the pressure vessel fluid from the rock and this assemblage placed in the pressure vessel. A state of near-hydrostatic stress is achieved by increasing confining pressure at room temperature. A conventional pulse transmission technique (Molyneux and Schmitt 1999, 2000) was used to obtain P and S wave velocities using longitudinally and transversely polarized piezoelectric ceramics, respectively. The transmitting ceramic was activated by the fast rise-time, and generated the appropriate mechanical wave. The response of the receiving ceramic was recorded at rates from 4 ns per sample to 10 ns per sample depending on the digital oscilloscope used. A typical final waveform trace was constructed from 100 500 progressively stacked records to reduce random noise. The waveform was transferred to a computer to be stored for later transit time determination. In each run, waveforms were acquired over the range of confining pressure from 0 300 MPa with an interval of 5 MPa and back. Pressure is applied not so much to mimic in situ conditions but to close as much of the microcrack porosity in the rocks as possible in order that the velocities are representative of the intrinsic mineralogical texture of the sample. The results from one S- wave run consisting 79 traces highlights the well-know decrease in pulse transit times and Great Explorations Canada and Beyond 2

increment in amplitude with increasing confining pressure in Figure 3. Figure 4 is a S- wave pulse train taken from one of the waveforms in Figure 3. The pulse first extremum was used to determine the transit time. In Figure 4 this is the first trough. Figure 3. Waveform traces during one pressure cycle. Figure 4. An example of a typical shear wave trace from Figure 3. Great Explorations Canada and Beyond 3

Results Studies on the relationship between velocity anisotropy and confining pressure are an important component of rock physics studies, particularly these rock types play an important role in the lithology of the upper lithosphere. The anisotropy of P and S wave velocity is an important characteristic of crust and mantle rocks. Determination of lithological and physical properties of these rocks is essential for proper interpretation of the nature of observed seismic reflectors. In the past, much laboratory (e.g., Christensen, 1966; Barruol and kern, 1996) and theoretical work (e.g., Baker and Carter, 1972; Siegesmund et al., 1989; Mainprice and Silver, 1993; Ji et al., 1994) has been devoted to the nature of P and S wave anisotropy in the Earth s crust and upper mantle. Christensen (1966) has correlated the volume of serpentinization with the decrease of P-wave velocity. Horen et al. (1996) have explored the relationships between degree of serpentinization and P- and S-wave velocities anisotropies. Nur (1971) discussed the effects of oriented micro-cracks on elastic wave propagation. The lattice-preferred orientation (LPO) has been taken into account in previous theoretical calculations of P- and S-waves velocities and seismic anisotropy of mantle rocks. In this study, the seismic properties and their directional dependence have been measured in eleven serpertinized dunite samples from Vourinos Ophiolite (France). The compressional velocities were measured to confining pressures of 300 MPa in mutually orthogonal directions to investigate anisotropic properties with respect to the visible textural properties of rocks. The shear-wave velocities were measured at two orthogonal polarizations for each direction to determine shear-wave splitting and correlate it with P-wave anisotropy. Once the material is anisotropic there will generally be compressional waves propagating with different velocities in the different directions, and the polarizations of two distinct shear waves propagating will lead to the shear wave splitting in the orthogonal direction. In the case of waves propagating along the lineation Y, the three elastic waves P- wave [yy], S- wave [yz], and S- wave [yx] will exist in such a situation. The P- wave propagating along the Y-axes is designated by P [yy], and two shear waves propagating in the Y direction polarized in the yz and yx plane are designed S [yz], and S [yx]. Measurements of velocities and anisotropy with different pressures are shown in Figure 5. Figure 5. Measurements of Velocities and Anisotropy The P and S wave velocity and anisotropy data measured at ultrasonic laboratory measurement on eleven samples of dunite exhibit a marked lattice preferred orientation (LPO) of olivine and the serpentine lattice. Optical microscopy study shows microcracks guided by the serpentine (lizardite) penetrative network. Observed Vp anisotropy varied from quasi-isotropic to the weak Great Explorations Canada and Beyond 4

anisotropic (A p =11%). Pressure invariance of observed P-wave anisotropy and shear-wave splitting indicates that the micro-cracks play an important role at pressures less than 100MPa, and that the lattice preferred orientation (LPO) is mainly responsible for the measured seismic anisotropy in these rocks. Acknowledgements Technical assistance by L. Tober, Dr. O. Catuneanu, T. He, and A. Berthelot. Funding by the Canada Research Chair Program and NSERC. Techniques are being developed with the support of Course funding provided by AERI. References Baker, D. W., and N. L. Carter, 1972. Seismic velocity anisotropy calculated for ultramafic minerals and aggregates, Geophys. Monogr., Am. Geophys. Union 16, 157 166 Barruol, G., Kern, H., 1996. Seismic anisotropy and shear-wave splitting in the lower-crustal and upper-mantle rocks from the Ivrea Zone experimental and calculated data. Phys. Earth Planet. Inter. 95, 175 194. Christensen, N.I., 1966. Elasticity of ultrabasic rocks. J. Geophys. Res. 71, 5921 5931. Cholach, P.Y., Molyneux, J.B, and D.R. Schmitt, Flin Flon belt seismic anisotropy: elastic symmetry, heterogeneity, and shear wave splitting, submitted to Can. J. Earth Sciences, manuscript pp. 50, February, 2003 Horen, H., Zamora, M., Dubuisson, G., 1996. Seismic waves velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: abundance of serpentine in slow spreading ridge. Geophys. Res. Lett. 23, 9 12. Ji, S., Zhao, X., Francis, D., 1994. Calibration of shear-wave splitting in the subcontinental upper mantle beneath active orogenic belts using ultramafic xenoliths from the Canadian Cordillera and Alaska. Tectonophysics 239, 1 28. Kern, H., 1982. P- and S-waves velocities in a crustal and mantle rocks under the simultaneous action of high confining pressure and high temperature and the effect of the rock microstructure. In: Schreyer, W. (Ed.), High-Pressure Research in Geosciences. Schweitzerbart, Stuttgart, pp. 15 45. Mainprice, D., Silver, P.G., 1993. Interpretation of SKS-waves using samples from the subcontinental lithosphere. Phys. Earth Planet. Inter. 78, 257 280. Molyneux, J. B. and Schmitt, D. R.. 1999. First break timing: Arrival times by direct correlation, Geophysics, 64: 1492-1501. Molyneux, J. B. and Schmitt, D. R.. 2000. Compressional-wave velocities in attenuating media: A laboratory physical modeling study, Geophysics, 64: 1492-1501. Nur, A., 1971. Effect of stress on velocity anisotropy in rocks with cracks. J. Geophys. Res. 76, 2022 2034. Siegesmud, S., T. Takeshita, and H. Kern, Anisotropy of Vp and Vs in an amphibolite of the deep crust and its relationship to the mineralogical, microstructural and textural characteristics of the rock, Tectonophysics, 157, 25-38, 1989. Great Explorations Canada and Beyond 5