'fsp ArvrnRrcAN M rneralocrsr

Similar documents
THE ANTHOPHYLLITE AND CUMMINGTONITE- GRUNERITE SERIES

FURTHER STUDIES IN THE PYROXENE GROUP

OLIVINES, PYROXENES, AND AMPHIBOLES PLEOCHROISM, INTERFERENCE COLORS AND EXTINCTION ANGLES

Fun with Asbestos 1. Table 1: Asbestos Minerals. Mineral Asbestos Variety Mineral Group Comments. monoclinic amphibole. monoclinic amphibole

Biaxial Minerals This document last updated on 27-Oct-2014

774 THE AMERICAN MINERALOGIST

Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and. MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout)

Serpentine Mine, Cyprus, 2007

amphibole PART 3 Pyroxene: augite CHAIN SILICATES

A NEW THBORY OF THE COMPOSITION OF THE ZEOLITES. PART Ii

GY-343 Petrology Petrographic Microscope Laboratory

ESS 439 Lab 2 Examine Optical Properties of Minerals

166 THE AMEruCAN MINERALOGIST

AUGELITE FROM MONO COUNTY, CALIFORNIA. Dwrcnr M. LBulroN, Stanford, Llniaersity, California.

Pyroxene, amphibole, and feldspar

Origin of optical pleochroism in orthopyroxenes

QUARTZ CRYSTALS OCCURRING IN GYPSUM

Earth Materials II Review Optical Mineralogy and Igneous Minerals

Tne ArvrERrcAN M rneralocrsr

Naturally Occurring Asbestos:

Optical Mineralogy in a Nutshell

ESS 439 Igneous Petrology/Optical Mineralogy

BERYLLIUM IN MINERALS AND IGNEOUS ROCKS HrNny S. Wasrrrwcrov, Geophysical, Laboratory.

Sapphirine crystals from Blinkwater, ~ rans~ aal.

Magnesioriebeckite in Crystalline Schists of Bizan in Sikoku, Japan

Prismatic cleavage and steep rhombohedral form in s-quartz.

NOTE ON DETERMINATION OF OPTIC AXIAL ANGLE AND EXTINCTION ANGLE IN PIGEONITES. F. J. TunNrn, [Jniters'ity oj Otago, Dunedin, I{ew Zealond.

Sorosilicates, Colors in Minerals (cont), and Deep Earth Minerals. ESS212 January 20, 2006

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS MINERALS LAB 1 HANDOUT

GEOLOGY 333 LAB 5. Light Mechanics

JOURNAL OF GEOLOGY APRIL-MAY, 1898 THE CHEMICAL AND MINERAL RELATIONSHIPS IN IGNEOUS ROCKS.

Name Petrology Spring 2006

H. S. WasnrNcroN enn H. E. Menwrx, Geophysical Laboratory, ' Carnegie Institution of Washington

Name Petrology Spring 2006 Igneous rocks lab Part II Hand samples of igneous rocks Due Tuesday 3/7

Plagioclases from Sultan Hamud, Kenya.

LAB 1: OPTICAL PROPERTIES AND THE PLM #1 Orthoscopic Light

GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008

ON THE DIELECTRIC CONSTANTS OF MINERALS

How many molecules? Pyrite FeS 2. Would there be any other elements in there???

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS

Fro. 2. Fibrous brucite in vein of chrysotile asbestos, Asbestos, Quebec. Pr,ern I. Frc. 1. Photograph of fibrous brucite from Asbestos, Quebec.

The structural formula of a hydrous amphibole.

This Lab will not be marked so make sure to get anything you are unsure about checked by your TA!

Earth and Planetary Materials

Igneous petrology EOSC 321 Laboratory 8: Intermediate and Felsic Volcanic Rocks. Pyroclastic Rocks

INTRODUCTION TO THE PETROGRAPHIC MICROSCOPE AND RELIEF, BECKE LINE, AND OBLIQUE ILLUMINATION

EESC 4701: Igneous and Metamorphic Petrology METAMORPHIC ROCKS LAB 8 HANDOUT

DIELECTRIC CONSTANTS OF CRYSTALS III BY D. A. A. S. NARAYANA RAO

LAB 5: COMMON MINERALS IN IGNEOUS ROCKS

Geol 5310 (Spr 09) Lab 1 Review of Optical Mineralogy (9/9/09) Due Date: Wed., September 16.

X-RAY INVESTIGATION OF FBRRIERITE, A ZEOLITE. Lroyp W. Sr,tpros, (Jniaersity of Oregon, Eugene, Oregon. Ansrnect

790 THE AMERICAN MINERALOGIST

THN AMERICEU MINERALOGIST

Two new pyroxenes included in the system clinoenstatite, clinoferrosilite, diopside, and hedenbergite.

Almandine from BotaUack, Cornwall.

Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II)

GY 302: Crystallography & Mineralogy

Chapter 6: The Phase Rule and One and Two-Component Systems aka Phase Equilibria

7. Dust Grains & Interstellar Extinction. James R. Graham University of California, Berkeley

SECONDARY MONTMORILLONITE IN A CALI- FORNIA PEGMATITE. J. D. LauonRMrLK and A. O. Wooorono, Pomona College, C I or emo nt, C alif or ni a.

Chapter IV MINERAL CHEMISTRY

Lab 4: Mineral Identification April 14, 2009

THE UNMIXING OF CHALCOPYRITE FROM SPHALERITE N. W. Buoncen, Massachuselts Institute oj Technology.

A Pleochroic Variety of Gem Labradorite From the Rabbit Hills Area, Lake County, Oregon*

Saunders) in line spectra. In applying this hypothesis to the structure. (1S, 2p, etc.), corresponding to those used (notation of Russell and

T nn A uerican M rneralocrsr

On Gem Or'thopyroxenes:

Symmetry. 2-D Symmetry. 2-D Symmetry. Symmetry. EESC 2100: Mineralogy 1. Symmetry Elements 1. Rotation. Symmetry Elements 1. Rotation.

IVAR OFTEDAL and P. CHR. SÆBO

OCEAN/ESS 410. Lab 8. Igneous rocks

Table 7.1 Mineralogy of metamorphic rocks related to protolith and grade

LAB 2: SILICATE MINERALS

Ar.r.rn, R. c. (re20), Mi.ch.Geot. r*,";";#.:;ieot'. ser'24, EXOMORPHISM AROUND AN APLITE-PEGMATITE DIKE, FELCH, MICHIGAN1

This is how we classify minerals! Silicates and Non-Silicates

Amphibole. Note the purple to blue-gray pleochroism in the glaucophane in this slide.

The 3 types of rocks:

Mesonorms of granitic rock analyses

ee.7s% AND LORENZENITE ANALYSIS OF RAMSAYITE Tu. G. Seraua, Insti,tute oj Geol,ogy, Geochemi.cal' Laboratory, U ni.aer sity oj E el,si.nki, Fi,nland..

Net-transfer reactions may be terminal reactions or tie-line flip reactions (discussed below).

Barium-felspars from Broken Hill, New South Wales.

Objectives of this Lab. Introduction. The Petrographic Microscope

Igneous petrology EOSC 321

A new occurrence of uvarovite from northern Karelia in Finland.

An X-ray study on the crystal-structure of giimbelite.

305 ATOMS, ELEMENTS, AND MINERALS

GEOLOGY 285: INTRO. PETROLOGY

ANDREMEYERITE, A NEW BARIUM IRON SILICATE, FROM NYIRAGONGO, ZAIRE

Assessing Hazards and Managing Risk associated with Naturally Occurring Asbestos (NOA): The Geologist, The Laboratory, and The Occupational Hygienist

OPTICAL NOTES ON SOME MINERALS FROM THE MAHOPAC IRON MINE, BREWSTER, NEW YORK. Josrrn L. Grr.r,solr, The Massachusefis Institute of Technology.

Sedimentation & Stratigraphy. Lab 3: Heavy Mineral Analysis Using the Franz Magnetic Separator

Uniaxial Minerals Descriptions

Laboratory 7: Alkaline rocks

THE EMPIRICAL UNIT-CELL CONTENTS OF THE FRIEDELITE FAMILY. \{ex H. IJnv, British Museum (Natural History), London, S.W. 7.

300 ATOMS, ELEMENTS, AND MINERALS

MINERALOGY LABORATORY Metamorphic Rocks and Minerals

Optical Mineralogy. Optical Mineralogy. Use of the petrographic microscope

Metamorphism (means changed form

Tnp Al,rERrcAN MlNERALoGrsr

Geos 306, Mineralogy Final Exam, Dec 12, pts

Minerals II: Physical Properties and Crystal Forms. From:

Transcription:

'fsp ArvrnRrcAN M rneralocrsr JOI'RNAL OF THE MINERAI,OGICAL SOCIETY OF AMERICA Vol. 10. OCTOBER. 1925 No. 10 THE FeSiO3-CaSiO3-MgSiOe-NaFeSisOe SYSTEM OF MONOCLINIC AMPHIBOLES. A. N. Wrucnnrr-, Uniaersil.y of Wisconsin Since the preparation of the article on the amphibole group,l further data have become available so that it is now possible to present a more complete account of the non-aluminous monoclinic amphiboles. The largest part of the new data was contributed by Sundius2 in his valuable study of the gruenerite-cummingtonitekupfferite series. Arlditional optic data on rare minerals composed largely of MgSiOa and NaFeSi2O6 ar given in the course of this article. The diagram of the MgSiO3-FeSiOr series published by Sundius suggestss that magnesia-rich anthophyllite is part of the same (discontinuous) series with cummingtonite and gruenerite. This view seems improbable, since artificial MgSiOe is known in a monoclinic form, and the orthorhombic series beginning with MgSiOa is continuous, at least to types in which Fe is dominant and probably to pure FeSiOa. Furthermore, the optic properties of the artificial monoclinic MgSiOa correspond well with those of the rest of the series, as shown in Fig. 1. The data on optic axial angle in the cummingtonite series require an S-shaped curve, which will perhaps be considered im' probable; since the measures are on crystals which contain from 0 (artificial MeSiOB) to 30 (Mansjd cummingtonite) molecular per cent of other molecules it is not certain that the double curve is correct, but the measures make a smooth curve much more nearly than the data on extinction angle. Of course' a double curve is not impossible as shown by the condition found in the plagioclase series. The MgSiOrFeSiOg series Iies along the longest horizontal line 1 Am. Jour.Sci., CCVII, 1924,p.287-2 Geol. Fiir. Fiirh. Stockholm,XL\l' 1924'p.154. s In a personal communication Dr. sundius points out that his diagram (p, 164) shows that the index of refraction lines have a steepel slope for the orthorhombic than for the monoclinic series and siates tbat he is "convinced that the optical properties of the two series are quite unlike." 335

.J.1 o TH E AM EKICAN MIN ERALOGI ST of Fig. 2; the gruenerite-riebeckite seriesa lies along the right hand side above the MgSiO3-FeSiOr series; the tremolite-actinolites series lies along a short line about half way below the ferromagnesian series. Pure CaMgSizOo, like pure MgSiO3 (as monoclinic amphibole) is unknown in nature, but was probably forrned arti- Ng-Np 6 3.60 t 700?v ovef x -e&0t Kupfferite Cunminqfonife Gruenerile Fig. 1. Relations between optic properties and composition in the MgSiO3-FeSiOs series of monoclinic amphiboles. ficially by Bowen.5 Monoclinic amphiboles approaching CaFeSizOo in composition are unknown and probably unstable; the same is true of monoclinic amphiboles approaching CaSiOa and NaFeSizOo in composition; CaFeSizOo is included in the figure merely for convenience. a This series was shown ih terms of weight per cent in Fig.4 of the amphibole article. (Am. Jour. Sci., CCVII, 1924, p. 307.) 5 See Am. Jour. Sci.., CCVII, 1924, p. 301. 6 Am.f our. Sci., CLXXXVIII, 1914,p.207.

JOURNAL MINERALOGICAI. SOCIETY OF AMERICA 33i The optic properties change very rapidly in the upper part of Fig.2, as illustrated previously in the case of the grueneriteriebeckite series. It is worthy of note that the unusual optic orientation, which seems to the writer to be common to all compositions in the upper part of the figure, has in many cases required special and repeated study for its determination. This orientation in monoclinic amphiboles seems to be caused by NaFeSizO6; it is Fig. 2. Relations between optic properties and composition in the Fesiorcasioa-Mnli;ffiT*36 sys tem of found in all such minerals containing an important tenor of this molecule, and in no others. The same molecule causes very marked absorption and pleochroism in blue, green and yellow, and also very strong dispersion, resulting in incomplete extinction in white light and abnormal interference colors. Such minerals are probably stable only under a very limited range of conditions; they are rare and confined (except for riebeckite) to contact zones. In them small changes of composition cause such large changes in optic properties that the data seem somewhat discordant. This condition is believed to be due to the fact that in a single small occurrence, only the average composition of which can be obtained, the optic properties vary very considerably; and these variations

338 TH E AM ERICAN M IN ERALOGIST are doubtless due to variations in composition. At the same time the diagram expresses the main facts correctly; the mean index of refraction is correct withih *.01 in all cases; the birefringence is correct within *.005 in nearly all cases; the position of the optic plane is believed to be correct in all cases; but the extinction angle and optic axial angle are only approximately correct for imerinite (No. 12) and crossite (No. a). The lower part of the figure includes richterite, tremolite and actinolite, as well as the artificial CaMgSirOo; the last substance is the onl.v one in the diagram whose optic sign is not correctly given by the diagram. No reason for the anomaly is known. fn this part of the system the optic properties do not vary so rapidly, and they are indicated with reasonable accuracy by the diagram, though the optic angle of richterite is smaller than given by the drawing. In both figures molecular percentages are usedl the- small amounts of MnO found in some analyses have been calculated as equivalent to FeO; NaFeSizOo is computed, if possible, after forming the MgSiOs, FeSiOr, and CaSiOg molecules. Those ana,lyses which show the presence of both CaSiOs and NaFeSizOo are plotted in the (partial) triangle above the MgSiO3-FeSiO3 line if NaFeSizOe is in excesst of CaSiOe and in the (partial) triangle below that line in the reverse case. All other molecules are omitted from consideration in plotting these analyses; the molecular percentages thus neglected are given after the references in each case. Arfvedsonite and cossyrite are composed largely of FeSiOa, NaSiOrOH, and NaFeSizOo; by adding another (partial) triangle at the right of the upper part of Fig. 2 they could be included in the diagram. However, the number of anal-yses is very small, and optic data are almost entirely lacking; the only measures of indices of refraction ever made on supposed arfvedsonite were actually made on barkevikite, according to Hintze.s Therefore, these minerals have been omitted; it may be noted that, as compared 7 Of course, ih calculating molecular percentages, molecule,s of comparable size are considered, so that NaFeSi:Or iis compared with CazSieOo, etc. Also CaSiOs is probably present in these amphi[oles, not as an independent variable, but as part of CaFeSieOo or CaMgSilOo. Recent analyses by Walker (Unh. Toronto Stud.. Geol. Ser., 17, 1924, p. 58) of "hastingsite" and by Shannon (Am. four,sci., CCVil, 1924, p. 323) of "hudsonite" include too much CaO to belong to ihe system here studied, though closely related to it. E Hoe, Mrurnnl. II., 1897, p. 1254,

JOURNAL MINERALOGICAL SOCIETY OF AMERICA J39 with gruenerite, arfvedsonite shows that NaSiOzOH causes a rapid change in the extinction angle, but has little efiect on the optic angle; the tenor of NaFeSizOo is small and not sufficient to produce much effect on the optic angle in arfvedsonite. Rprpnnxcos lno Dar,q, ron Frcs. 1 elvo 2: Nos. 13 ro 24 or Frc. 1: ArL rnr NuMsnns or Frc. 2. 1. Torendrikite, Ambahy, Madagaspar. A. Lacroik: Comp. Rend., CLXXXI, 1920,p.594. Inadditiontotheconstitutentsshowninthediagrarnitcontairrs also 7,7 molecular percent CaSiOs,3.l KAlSizOe, 2.1 AIAIOB,0.5 HzSiOs. 2V:very large, Z Ac:40"!, Y:b, X:sea blue, f :violet, Z:straw yellow. (The writer would exchange Y and. Z in this description.) 2. Torendrikite, Ambatofinendrahana, Madagascar. A. Lacroix: loc. cit. Contains also 7.6 CaSiOa 4.4 KAlSizOe, 3.1 H2SiO3. 2V:very large, Y:b, Z nc:4oo *,strong dispersion. Asample of the analyzed material,r'erykindly supplied by Professor Lacroix, was tested by the writer with the following results. The index is 1.665+.005; cleavage fragments in oil show vertical elongation distinctly; on the cleavage face the elongation is negative, but after careful ssarch a fragment with positive elongation was found. A fragment with parallel extinction, and therefore parallel to 100, is not normal to an optic axis, but is normal to a plane of symmetry of the triaxial ellipsoid. The optic angle is large and dispersion is so great as to prevent complete extinction in fragments parallel to 010. It seerns that the optib plane must be normal to 010 with Z : b and, Y A c rather latge. The data published by Lacroix (Mineral. Madagascar, III, 1923, p.295), namely, Ng: 1.67, Np: 1.65, were found later. 3. Crocidolite, Golling, Salzburg. R. Doht and C. Hlawatsch: Verh. geol. Reichsanst. Wien, 1913. Contains also 21.7 HzSiOs, 2.4 AlAlOi. (Since quartz is reported as an impurity the per cent of HzSiOa may be less,) Nm<1.692, Ng-Np:.006, Z:b, XAc:8"-llo, plv strong, X:blue, Y:yellow, Z: violet. 4. Crossite, Coast Range, Calif. C. Palache: Bull,. GeoI. Dept. U. Calif., l, 1894,p. 181. Containsalso 19.8 NaAlSisOo, 5.0 CaSiOs. XAc:13". Rosenbusch (Mikr. Phys., I, I, p. 246) proved that this is really YAc:13'(to 30') and Z:b.Larsen gives for crossite: (-)2V:rutherlarge, Ng:l.ffJ, Nm : 1.659 (1.670), Np : 1.657, Ng-Np :.006, [Ac : 10". 5. Crocidolite, Berks Co., Pa. E. T. Wherry and Earl Shannon: Jour. Wosh. Aca.il. Sci., XlI, 1922, p. 242. Contains also 18.7 HzSiOa, 1.9 FeFeO:, 1.6 TiTiOs, 1.0AlAlOs. First described (Am. Mus. NaI.IIist.,XXXfi,19{3, p. 517, as having (-)2V:large and, Z Ac:3" to 15', but Wherry and Shannon give X A c:3" to 15" with Ng: 1.66, Nm:1.65, Np: 1.6c!..1.65, Ng-Np: v61ia51" but weak, dispersion strong. 6. Crocidolite, So. Africa. A. H. Chester and F. J. Cairnst Am. Jour. Sci'., CXXXIV, 1887, p. 116. Contains also 19.5 HzSiOs, 3.9 FeFeOs, 1.5 CaSiOa. A. Johnsen (Cent. Mi.neral., 1910, p. 353) gives for crocidolite from So. Africa, but not for analyzed material: (+)2V>56", X:b, strong dispbrsion; this is not in harmony with other results.

340 THE AM ERICAN MINERALOGIST a Osannitei Cevadaes, Portugal. C. Hlawatsch: Festsch., H. Rosenbusch, 1906, p. 74. Contains also 7.1 HzSiOs, 4.3 KAlSirOc, 1.9 CaSiOa. (-)2V :large, Ng-Np :.963-.004, Z : h, X 1t, c : 0o red, 5o blue ; X : blue, Y : yellow, Z : green, Riebeckiqe, Quinry, Mass. C. Palache and C. H. Warren: Am. Jour. Sci., CLXXXI, 1911, p. 547. Contains also 9.8 HzSiOa, 2.8 excess SiOg, 3.3 NaAl Si2O6, 2.7 CaSiO3, 0.9 TiTiOB. (-) 2V:Iaryq Nm:1.695, Ng-Np:urs61. Z : b, X A c : 4 *, X :blue to green, y :yellow, Z : green to black. 9. Osannite, Alemtejo, Portugal. A. Osann and O. Umhau er:. Sitz. Akod. Wiss. Heiilelberg, A. 1914, Abh. 16. Contains also 5.7 HzSiOs, 4.5 CaSiOs, 3.8 KSiO, OIJ. (-)2V:large, Ng-Np:weak, Z:b, XAr:3"-5', extinction on 110: 2.5", X :blue, Y :yellow, Z : dark green. 10. Hastingsite, Hastings Co., Ont. F. D. Adams and B. J. Flarrington; Am. Jour. Sci,., CLI, 1896, p.210. Contains also 21.7 CaAlOz(OH),3.1 AlAlOa, 2. 3 FeFeOe. Nm : 1.69, Ng-Np : q'sak, (-) 2V : 30" -45", p ) v sttong, Z A c : 25"-30' in obtuse angle F, But Graham (Am. Jour. Sci., CLXXVIII' 1909, p. 540) has shown that the optic plane is normal to 010, at least in green, with 2 Z: very smali. 11. Hastingsite, Almunge, Sweden. P. Quensel: Butt. Geol. Inst. (1. Ufsal'a, XlI, 1913. Contains als o 16.5 CaAlOr (OH), 5. 1 CaSiOs, 4.9 AlAlOs, 1.5 KSiOr(OH). 2V:0"*, optic plane parallel and normal to 010, Z oryac:35'-41o,x: yellowish green, I:bluish green, Z:gteen. t2. Imerinite, Ambatoharina, Madagascar. A, Lacroix: Mineral. France, IV, 1910, p. 787. Contains also 16.3 NaSiOz(OH) 5.7 (Na,K)AlOFz, 5.1 CaSiOg. (-)27:small, ZAc isneat 45'with strong disperslon,znnal. Asample kindly supplied by Prof. Lacroix gives N : 1.650 +.005, Ng-Np :.020 +.005, X n c : 23"!3" (red), 13'f 3' (blue), but this has X:bluish green, 7:slate blue, 2 -pale green, and therefore probably is not exactly of the same composition as the sample described by Lacroix, which has a:pale yellowish green, I: violet blue, 2:pale bluish green. The data published by Lacroix (Mineral. Madagascar III,1923,p.295),namely Ng: l.$53, Np: l.s3g were found later. Artificial. F. E. Wright: Am. Joor,r. Sca'., CLXXI, 1906, p. 403, and A. N. Winchell, Am. f our. Sci., CCVII, 1924, p. 295. (+)2V:88", Ng:1.597, Nm:1.590, Np:1.582, Ng-Np:.015, X Ac:79". Cummingtonite, Mansjd Mt., Sweden. H. v. Eckerman: Geol. Ftir. Farh. Stockholm, XLIX, 1922, p. 303. Contains also 17.3 H:SiO:, 9.8 AlAlOB, 4.3 NaFeSi2O6, 1.3 NaSiOz(OH), 0.8 TiTiOs. e) 2V : 79"58', Ng : 1.6519, Nm : 1.6410, Np : 1.6259, Ng-Np :.926, Z Ac : 13.8". Cummingtonite, Kongsberg, Norway. A. Des Cloizearx: Nour. Rech. Mem., XVII, 1867, Dana: Syst. Mineral. p. 390. Contains also 5.6 HrSiOr. Nm=1.638. (+) 2V:77"58', p<v, ZAc:75"-16". Cummingtonite, Greenland. A. Des Cloizeaux: loc. cit. Contains also 12.2. HzSiOs. (+)2V:77' *, ZAc:76o-17o. tl. Cummingtonite, Orijarvi, Finland. P. Eskola: Bull. Com. GeoI. Fi.nland.e. XL, 1915, p. 183. (Analysis incomplete.) Nm:1.642, NS-Np:.026, (*) 2V>80", Z nc:20". 18. Cummingtonite, Rtibergsgruvan, Sweden, N. Sundius: Geol. Far. Fdrh, Stockhol.m,XLYI,1924,p.154. Containsalso2.0CaSiOa(incompleteanalysis). (+)2Y : 84", Ng : t.067, Nm : 1.650, Np : 1.639, Ns-Np :.028, X A c : 70.5'.

JOURNAL MINERALOGICAL SOCIETV OF AMERICA 3tl 19. Cummingtonite, O. Silvergruvan, Sweden. N. Sundius : troc. cit. Contains also 13'6 HrSiOB, 0.6 CaSiOs, 0.4 FeFeOs, 0.3 AlAlOi. (-)2V:87', Ng:1.679, Nm: 1.665, Np:1.650, Ng-Np :.029, X Ac :74". 20. Cummingtonite, Brunsjiigruvan, Sweden, N. Sund,ius: loc. ci't. Contai,ns also 12.6 HzSiOs, 0.4 AlAlOB, 0.2 FeFeOs. (-)2V:81', Ng:1.685, Nm:1.670; Np : 1.650, Ng-Np :.Ql$, f,,a16 : /$'. 21. Gruenerite,Stromshult,Sweden. J. Palmgren: Bul,I. GeoI. Inst. U. Upsala, XIV' 1917, p. 109, and N. Sundius: loc.cit. Contaihs also 13.3 HzSiOa,0.6 FeFeO3, 0.6 ALAIOB. (-)ZV:79.2", Ng:1.699, Nm:1.6835, Np:1.663' Ns-NP :.036 (.040), XAc : 75.5'. 22. Silvbergite,'silvberg,sweden. N.Sundlus: l,oe.cit. Containsalso2.5CaSiOs, 2.2 AIAIOa (incomplete analysis). (-)2V:80", NS:1.7057, Nm:1.6904' Np : 1.6696, NB-Np :.0361, X A c : 75.6". 23. Dannemorite, Dannemora, Sweden. N. Sundius: loc. cit. Contains also 2.3 CaSiOe, 0.6 AlAlOs (incomplete analysis). (-)2V:80", Ng:1.713, Nm: 1.697, Np : 1.673, Ng-Np :.040, X Ac:77.5". 24. Gruenerite, Collobridres, France. S. Kreutz: Sitz. Akad..Wiss.Wien,CXYll, 1908, p. 875. Contains also 6.4 H2SiOs, 4.0 NaFeSizOo, 1.3 AlAlOa G)zV : 82" +, Ng:1.717, Nm:1.697 (1.695), Np:1.672, XAc:79'-8O". 25. Richterite,Langban, Sweden. L6vyand Lacroix: Min6r. Roches, 1888, p. 144. Analysis by Michaelson. Contains also 14.9 KSiOI(OH), 4.8 NaFeSi:Oe, 1.1 NaAIO(OH),. (-) Ng:1.64, Nm:1.63, Np:1.62, Ns-Np:.024, X Ac:7O'(73"). 26. Richterite, Sweden. S. Kreutz: loc. cit. Conta.ins also 11.1 (Na,K)SiOz(OH), 5.6 NaFeSiOo, 2.4 HrSiOB. (-)2v :70'331, Ng:1.6367, Nm:1.6294, Np: 1.6151, Ng -Np:.0215, X A c:73o51. 27. Richterite, Langban, Sweden. See No. 25. Analysis by Engstrom. See Dana: Syst. Mineral. Contains also 13.7 NaSiOz(OH), 4.9 NaAIO(OH)2. 28-32. Tremolite, See Am. Jour. Sci., CCV[, 1924, p. 306. 33. Tremolite, Edwards, N. Y., E. T. Allen and J. K. Clement: Am. f owr. Sci., CLXVI, 1908, p. 101. Contains also 4.9 HzSiOa, 4.9 (K,Na)SiOzOH, 3.7 Na(Al,Fe)SizOa. No optic measures. 34. Nephrite, Bahia, Brazil. H. S. Washington: Pan-Amer. Geol., XXXVII' 1922, p. 198. Contains also 12.2 HzSiOs, 2.8 NaAISizOo, 0.2 AlAlOs, 0.2 FeFeOs. Ng:1.625, Np:1.597, X Ac:74". 35. "Hornblende," Russel, N. Y., S. Kreutz: loc. eit. Contains also 9,8 NaSiOz (OH),2.4 AlAlO3, 2.1 NaFeSizOe, 1.2 HzSiOr. e)2v:86"14', p7v weak. Ng:1.6244, Nm:1.6134, Np:1.6017, Ng-Np:.0227, X A c:70"29'. 36. Tremolite, Nordmark, Sweden: G. Flink: Zeit,. Kryst., XV, p.90. (Analysis incomplete.) (-)2V : 84"9', Nm : 1.618, X A c : 72" 42t. 37-41. Actinolite, see Am. Jour. Sci., CCV[, 1924, p. 306. 42. Actinolite, Berkeley, Calif., W. C. Blasdale: BuII. Geol. Dept. Uni'tt. Cal,if., II, p. 328. Contains also 14.8 NaAISizOo, 4.1 HzSiOs. Ng: 1.6529, Np : 1.6267, X A c:75o26t. 43. Actinolite, Dubostica, Bosnia. M. Kispatic: Zeit. Kryst., XXXVI, 1902' p. 649. Contains also 12.4 CaAlOz(OH), 0.8 AlAlO3. No optic measures' 44. Artiicial monoclinic amphibole not certainly of composition indicated, but made from 85/, CaMgSizotand ls/s SiOr. N. L. Bowen: Am. four. Sci., CLXXXVtrI, 1914, p. 207, and CCVil, 1924, p. 296. (*) 2V : 45", Ng : 1.638, 56: (1.623) Np:1.620, X A c:23".