,\ I. . <- c}. " C:-)' ) I- p od--- -;::: 'J.--- d, cl cr -- I. ( I) Cl c,\. c. 1\'0\ ~ '~O'-_. e ~.\~\S

Similar documents
Mathematics 222a Quiz 2 CODE 111 November 21, 2002

A L A BA M A L A W R E V IE W

Groups. 3.1 Definition of a Group. Introduction. Definition 3.1 Group

RELATIONS AND FUNCTIONS

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

::::l<r/ L- 1-1>(=-ft\ii--r(~1J~:::: Fo. l. AG -=(0,.2,L}> M - &-c ==- < ) I) ~..-.::.1 ( \ I 0. /:rf!:,-t- f1c =- <I _,, -2...

0 Sets and Induction. Sets

APPH 4200 Physics of Fluids

Tausend Und Eine Nacht

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

P a g e 3 6 of R e p o r t P B 4 / 0 9

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

Kevin James. MTHSC 3110 Section 2.2 Inverses of Matrices

MATH 433 Applied Algebra Lecture 22: Review for Exam 2.

Solutions to Assignment 3

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B

* 8 Groups, with Appendix containing Rings and Fields.

5 Group theory. 5.1 Binary operations

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Algebraic Structures Exam File Fall 2013 Exam #1

Math 430 Final Exam, Fall 2008

Math 3121, A Summary of Sections 0,1,2,4,5,6,7,8,9

'NOTAS"CRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to :

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

Math /Foundations of Algebra/Fall 2017 Foundations of the Foundations: Proofs

R e p u b lic o f th e P h ilip p in e s. R e g io n V II, C e n tra l V isa y a s. C ity o f T a g b ila ran

Basic Definitions: Group, subgroup, order of a group, order of an element, Abelian, center, centralizer, identity, inverse, closed.

MATH 2050 Assignment 4 Fall Due: Thursday. u v v 2 v = P roj v ( u) = P roj u ( v) =

Relations. Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations. Reading (Epp s textbook)

Written Homework # 4 Solution

Math 430 Exam 2, Fall 2008

MATH 2030: MATRICES. Example 0.2. Q:Define A 1 =, A. 3 4 A: We wish to find c 1, c 2, and c 3 such that. c 1 + c c

Solutions of Assignment 10 Basic Algebra I

1 2 3 style total. Circle the correct answer; no explanation is required. Each problem in this section counts 5 points.

MATH 326: RINGS AND MODULES STEFAN GILLE

MATH 3330 ABSTRACT ALGEBRA SPRING Definition. A statement is a declarative sentence that is either true or false.

Mathematics Extension 1

r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A

MATH 2200 Final LC Review

Linear Algebra. Session 8

GROUPS. Chapter-1 EXAMPLES 1.1. INTRODUCTION 1.2. BINARY OPERATION

MULTI-RESTRAINED STIRLING NUMBERS

MODEL ANSWERS TO HWK #7. 1. Suppose that F is a field and that a and b are in F. Suppose that. Thus a = 0. It follows that F is an integral domain.

1182 L. B. Beasley, S. Z. Song, ands. G. Lee matrix all of whose entries are 1 and =fe ij j1 i m 1 j ng denote the set of cells. The zero-term rank [5

FOR TESTING THill POWER PLANT STANLEY STEAM AUTOMOBILE SOME TESTS MADE WITH IT. A Thesis surmitted to the

Ranking accounting, banking and finance journals: A note

Ring Theory Problem Set 2 Solutions

Introduction to Groups

T h e C S E T I P r o j e c t

Algebraic structures I

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

Linear Algebra. Week 7

MODEL ANSWERS TO THE FIRST HOMEWORK

A Generalization of VNL-Rings and P P -Rings

Mathematics Review for Business PhD Students Lecture Notes

SOLUTION SET. Chapter 9 REQUIREMENTS FOR OBTAINING POPULATION INVERSIONS "LASER FUNDAMENTALS" Second Edition. By William T.

ECE430 Name 5 () ( '-'1-+/~ Or"- f w.s. Section: (Circle One) 10 MWF 12:30 TuTh (Sauer) (Liu) TOTAL: USEFUL INFORMATION

Problem 1: Suppose A, B, C and D are finite sets such that A B = C D and C = D. Prove or disprove: A = B.

MATH 304 Linear Algebra Lecture 15: Linear transformations (continued). Range and kernel. Matrix transformations.

6 Permutations Very little of this section comes from PJE.

MATH 420 FINAL EXAM J. Beachy, 5/7/97

Ring Theory Problems. A σ

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic

BASIC MATHEMATICAL TECHNIQUES

Basic Concepts of Group Theory

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3

MATH 101: ALGEBRA I WORKSHEET, DAY #1. We review the prerequisites for the course in set theory and beginning a first pass on group. 1.

Chapter 3. Rings. The basic commutative rings in mathematics are the integers Z, the. Examples

MATH HL OPTION - REVISION SETS, RELATIONS AND GROUPS Compiled by: Christos Nikolaidis

SUBSEMiGROUPS OF THE ADDITIVE POSITIVE INTEGERS 1. INTRODUCTION

QUESTION BANK II PUC SCIENCE

MTH 309 Supplemental Lecture Notes Based on Robert Messer, Linear Algebra Gateway to Mathematics

,0,",,.,*",,ffi:, *",",,,",*YnJt%ffi& (st& sc oev.sectton, No. 3\ q2tvvlz2or 5. MemoNo 3\q34o1s Date 1a 122o1s COI.IECTOMTE, MALKANGIRI OROER

Division of Marks TOTAL [3 +2] Part -A Part-B Part-C

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

MATH PRACTICE EXAM 1 SOLUTIONS

TRAN S F O R M E R S TRA N SMI S S I O N. SECTION AB Issue 2, March, March,1958, by American Telephone and Telegraph Company

Math 430 Exam 1, Fall 2006

Supplementary Material for MTH 299 Online Edition

A matrix over a field F is a rectangular array of elements from F. The symbol

Chapter 1 solutions. (E1) and (E2):

2) e = e G G such that if a G 0 =0 G G such that if a G e a = a e = a. 0 +a = a+0 = a.

SYMMETRICOMPLETIONS AND PRODUCTS OF SYMMETRIC MATRICES

Math 113 Practice Final Solutions

2.3. VECTOR SPACES 25

Countable and uncountable sets. Matrices.

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch

SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT

THE NUMBER OF LOCALLY RESTRICTED DIRECTED GRAPHS1

Week 4-5: Binary Relations

MATH Topics in Applied Mathematics Lecture 2-6: Isomorphism. Linear independence (revisited).

Math 511, Algebraic Systems, Fall 2017 July 20, 2017 Edition. Todd Cochrane

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Downloaded From:

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013

Solution to Problem Set 3


APPENDIX F WATER USE SUMMARY

Transcription:

Math 3306 - Test 1 Name: An d {"0v\ ( _ roj ~ ed Date: l'( ~0 { 1\ Fall 2011 1. (to Pts) Let S == {I, 2, 3,4, 5,6,7,8,9, 10}. of each of the following types of mappings, provide justification for why the example satisfies the conditions. // 1 - --::: -.J r l/... a. Give an example a bijection a : S ~ s. ~{..\ ~ \Ji " (..' 1)') I '" ):( 0' Vl1r V\ ->\('~ j J) -:.' d' _ -:., 11 <):' / b. Describe your above bijection as a permutation of th ments of S in 2-row notation and also in cyclic notation.,-. ( I. 2. S '-1- S <:, '1 '3 "1 \ ~ '2- 'S '-t S ' I ~ 0 ) ( I) Cl c,\. c. 1\'0\ ~ '~O'-_ **** The 2 theorems below will be used for reference **** Theorem 2.1 Assume that ex: S ~ T and {3( T ~ U. (a) If ex and (3 are onto, then (3 0 ex is onto. I (b) If {3 0 ex is onto, then {3 is onto. (c) If ex and,6 are one-to-one, then j3 0 ex is ohe-to-one., (d) If j3 0 ex is one-to-one, then ex is one-to-one. Theorem 2.2 A mapping is invertible if and only if it is both one-to-one and onto. 2. (5 Pts) Particularly in light of Theorem 2.2, the definition of an invertible mapping cannot be simply that it is one-to-one and onto (although as the theorem proports this is logically +5 equivlent). Thus, provide the formal definitions of inverse and invertible assumed in our,\ I. ~ ~. <- c}. " C:-)' ) I-,, ;>;) f ~$ 11-e.. 'J,r. J ea~ 0" Ii-. textbook., ~ 1 ;.. p od--- -;::: 'J.--- d, cl cr -- I... ~-r Ls V A tvl~l?pi "') i ) II/',!l,{.L1-1r) 1e -.1-1L.c 1V\'Je- ')e. e ~.\~\S

!. J ' ft, If '!'\-; ~I ""J i-. <..1.' l.".r.' C-'v-d ';). 0 "" 1 rr~(,,, l ' J 1':"-1.,) ~,- f~ t-..,..~ (),... 1 4o.... fc-' I 7 '" S,~.u. ''i) - -;,. e., - ' I r.'- '. >\., 'e-\'\'r.p...e- h Q, \~. ;...J -,. I J.. If" "" 0 ' r '~)) ~ ~l!'h' 0.. 1 / ft.'. 1(..I.!(e.".',Pv/x" S '~1 '< i' t. Qi) 1'rz:,S''''N,~~Q''.,..U.. t :;'o! i (>--<-- h ki_'l.~ ' l,," " ', J.,;.. l. \J:)" o,c..l.., \"'r II J' ' U;, ce--- "ef " ' ' L \ 1\ O S...,- ty'4 "1 ""-v-.'b- to }V'" ') : \ n I ', ~. ~ I. '\ 3. 1(81 ts) Assume that a: S --t T nd /3: T --t U. Use Theorems 2.1 & 2.2 to prove the following: (a) If a and /3 are invertible, then /3 0 a is invertible. (b) If /3 0 a is invertible, then /3 is onto and a is one-to-one. A.:s.s,~J".e '"")..". t<?j /: ( -!. I ' \ J'!Jl ~. ~./,-" +0 ~~/'.,. -')/\{ 'r-o <QV\-e ~ +0 ~ Ov: -c :J..v.,..~ c A'.'~ ~..' I<~' (.. A -,,,r..,,i b~ ;.. " ~v\':'ij,i I..N~, (l \, ~ [. r '~' tl \ 1-4. (8 Pts) For each equation below: Does * define an operation on the set of integers? Explain your answers. 4b.

Name_...:... l'_, _ ).:...:._ ( ''. _ 'V o.....;.-'-"e \ ~ =---.J('--_ Page 3 S. (8 Pts) Let Q = { m 1m, n are integers with n =I- O} be the set of rational numbers n and * be the operation on Q defined by Mb = ab + 3 for all a, b E Q. Sa. Determine whether the operation * is commutative. If not, give a count~rexample. i a _ ::'- ' JU~ ",.}. o S---..J b-::;. ~ \"'e"~ s-to. ~,> CO I\'\-"'\.Q. ~ c~,; y\ L.'0f' IS" I6u C;v.~.I')i.\l.. 0... 0.;(. ~ c::o. ~~:t.. ~ ~-.\- ~ J)' -, 1'\ :; f' So ::>,)~ d b :x-~;:..i >f- ~ ~ ~..,.<;. '5 ''1 S t" ( ' Sb. ~etermine whether th,e operation * is associative. If not, give a counterexamj?le. >f s 'd.sc,00~~ /:- 1\ o-. ~ {~ ~c.') -- ~ -l"b/,' C,.i..)(.ad" ~ \ b, c. t:: ~. ) +/j _ \.~ ~ 1:;~?,,_..!o 0. t 0-.. &>*c..)~ ",'.. a..r- ~-ts ~o.. l bg -t--o -j-? ';::: a...b'-+~o.. rs' ( q \:;,) *c. :::- (0lo-r~ G- ~(~'o n)c.. + s ~.3bc. + '3, <=- '3 Q", h'e....>- 3<: ~ --; -4- ~!a \'-' S~~ ~ / >A.) no1- ";.). '3 ':- c. ~~ '<I.e.. 6. (9 Pts) Given here is a table that defines an operation on the set S = {a, b, c}. * a b c a a a a b c a b c a c c 6a. Explain why * given in the above table is an operation on S. e (. '4,v.<;~_ h-. ~(e ~<; [.\01",,' <(.. / {f 6b. Is the operation * commutative? Explain. -f= ~) V\ D 1- C:..o...,..,. "'- ~ Jr., Ie: O. y b -:f. b- 0. :e. CA* b -;:- 0-.. 7~ ~ y. ~ ~ C! 6c. Does the operation * have an identity element? If yes, which element is the identity element? ~l~,-th U~~ ~. I..- ~,Je,.V\.f,1 d v~e.~-'r ' r, -.fo ':~. ','~ JS' ;/, ' c ~'\, t~... ";). J~.

(c_ ""'.'..(f1' L 8. (8 Pts) Explain why each of the following sets with the given operation is not a group. 8a. The set of all integers Z under subtraction. -:z, L I...l. oeul1j:.e j I j '3 Q---- \.II. V\..~ ~ ( SV\':.H('C C. <"I.;) '\ 1'-: V'II), \ - '" -\ " \ ) 8b. The set of all rational numbers, Q = {m 1m, nez, n i= O}, under multiplication. (n J n VV\ ~ ttf::\ \A)1".Ue.. n;;/:-o \'1 \ \ ', ~ 0 t- -; L/1QV'. ~ 'C...--' IJ.?I. I Y. "f1 &< ~ ~ :~c:: o;, ;~.: ' :ro.'~l~u: "A \h, \~"~r ~ ~. VV\ ~OV0e"Qj v. y V, 9. (4 Pts)~~ or False: If G is a group under operation *, then G has a unique identity. / ~ r False: If G is a group under operation *, then every element of G has a UnIque Inverse. -1-1

PageS 10. (8 Pts) Suppose the partially completed table below is a Cayley group table. Fill in the blank entries. * e a b c e e a b c a 0\ b C- e, / b ~ L- " t{ c v e- O( b 11. (12 Pts) In parts a and b, write each permutation as a single cycle or as a product of disjoint cycles. 12. (8 Pts) The positive rationals Q+ with the binary operation * defined by a*b = ~g form a group.. + a. Find the identity element of this group. \j1 de.~-~, h~... (J~ ; Je~~~ -I\.. C( {.P 1..$ e. ~ (Q S~~ ~ ". r.;, I) - 0 \I.0-0 p, fj\~ I. \ 10,., ~ -.. " '- -. ~ c~<o. C :'C>' f' ~! ~ 0"" \0"10. ~ ~ (v 'J..''-'f '1 t;- fr '" r-~~ -= l\, y,", <.1e 104 7 4 9 r Pf ffl 10 w( ~S-\/~ e --- 10. -r '& d h. f h I 4 <?.n (} _l.~ "; 9~ "\ \' ( e'l.l 0, e:. f;jf- \ 1L~(i- ls ~, b F In t e Inverse 0 tee ement g. '!:::> 0' _ r y, '\ "1.--'\ v~... b ec;t ~ o ~A~~ b ~- " :: (J..- 10 -:::;- e I

Evaluate 0:10:2 = c<.. / ) Evaluate a2a2 = DZ I Evaluate a.la 2 = 1')("1 True or@it is the case that al and a2 are inverses. 13c. Complete the following table for H. al a2 a3 arj al 0:1 0:2 0:3 0:4 a2 a2 rj I cz LY Jvl.. a3 a3 0(1{ C! ~l- / 0:4 a4 cf ') d- )- Cl I List the elements of the following subset of H.(Hint recall that permutations are mappings) 13d. {a E HI a(l) = 1 and a(3) = 3} c{j t.,/ -,.J, '-~, - -\