Right-handed SneutrinoCosmology and Hadron Collider Signature

Similar documents
Dark Matter in Particle Physics

Right handed Sneutrinos as Nonthermal Dark Matter

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Supersymmetric dark matter with low reheating temperature of the Universe

Effects of Reheating on Leptogenesis

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Astroparticle Physics and the LC

Neutrino Mixing from SUSY breaking

Making Dark Matter. Manuel Drees. Bonn University & Bethe Center for Theoretical Physics. Making Dark Matter p. 1/35

The Physics of Heavy Z-prime Gauge Bosons

SUSY models of neutrino masses and mixings: the left-right connection

Lecture 18 - Beyond the Standard Model

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Asymmetric Sneutrino Dark Matter

Moduli Problem, Thermal Inflation and Baryogenesis

Astroparticle Physics at Colliders

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Gravitino LSP as Dark Matter in the Constrained MSSM

Sneutrino dark matter and its LHC phenomenology

U(1) Gauge Extensions of the Standard Model

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

Invisible Sterile Neutrinos

Models of Neutrino Masses

sin(2θ ) t 1 χ o o o

Searching for sneutrinos at the bottom of the MSSM spectrum

The Standard Model of particle physics and beyond

Probing SUSY Dark Matter at the LHC

Natural SUSY and the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

The first one second of the early universe and physics beyond the Standard Model

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Determination of Non-Universal Supergravity Models at the LHC

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Implications of an extra U(1) gauge symmetry

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Supersymmetry at the ILC

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter

Implications of a Heavy Z Gauge Boson

12 Mar 2004, KTH, Stockholm. Peter Skands Dept. of Theoretical High Energy Physics, Lund University LHC

Split Supersymmetry A Model Building Approach

Models of New Physics for Dark Matter

Feebly Interacting Massive Particles and their signatures

The Matter-Antimatter Asymmetry and New Interactions

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

Testing supersymmetric neutrino mass models at the LHC

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Neutrinos and Fundamental Symmetries: L, CP, and CP T

The Yang and Yin of Neutrinos

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

Leptogenesis with Composite Neutrinos

Pati-Salam GUT-Flavour Models with Three Higgs Generations

University College London. Frank Deppisch. University College London

Heavy Sterile Neutrinos at CEPC

Baryogenesis and Particle Antiparticle Oscillations

Leptogenesis and the Flavour Structure of the Seesaw

Trilinear-Augmented Gaugino Mediation

Beyond Standard Model Effects in Flavour Physics: p.1

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

Supersymmetric Seesaws

SUSY-Yukawa Sum Rule at the LHC

Gauged Flavor Symmetries

A model of the basic interactions between elementary particles is defined by the following three ingredients:

MICROPHYSICS AND THE DARK UNIVERSE

Probing Higgs in Type III Seesaw at the Large Hadron Collider

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine)

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter

SUPERSYMETRY FOR ASTROPHYSICISTS

How high could SUSY go?

Dark matter and entropy dilution

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Supersymmetry Breaking

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge

Recent progress in leptogenesis

Leptogenesis via the Relaxation of Higgs and other Scalar Fields

Phenomenology of the Higgs Triplet Model at the LHC

Lepton-flavor violation in tau-lepton decay and the related topics

Dark Z & Doubly Charged Leptons. Qing Wang. 6th FCPPL workshop, NanJing, China. Mar 28, 2013, Ying Zhang. Giacomo Cacciapaglia & Aldo Deandrea IPNL

A light singlet at the LHC and DM

Effective Theory for Electroweak Doublet Dark Matter

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

arxiv:hep-ph/ v1 11 Jan 2001

Abdelhak DJOUADI (LPT Orsay/Next Southampton)

Phenomenology of Fourth Generation Neutrinos

Yasunori Nomura. UC Berkeley; LBNL. hep-ph/ [PLB] hep-ph/ [PLB] hep-ph/ [PRD] Based on work with Ryuichiro Kitano (SLAC)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Introduction to Supersymmetry

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung

Preparations for SUSY searches at the LHC

Search for Heavy Majorana Neutrinos

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

perturbativity Pankaj Sharma Based on : arxiv: st September, 2012 Higgs-electroweak precision, vacuum stability and perturbativity

7 Relic particles from the early universe

Full Mass Determination from M T 2 with Combinatorial Background

Inert Doublet Model:

arxiv:hep-ph/ v2 12 Jul 2003

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

Transcription:

Right-handed Sneutrino and Hadron Northwestern University with Andre de Gouvea ( Northwestern) & Werner Porod ( Valencia)... June 15, 2006 Susy 06, UC Irvine Right-handed Sneutrino and Hadron Collider Signature

Outline Motivation Sneutrino mass matrix & mixing Right-handed sneutrino (Ñ R ) dark matter Ñ R Tevatron and LHC signatures Conclusions Right-handed Sneutrino and Hadron Collider Signature

Motivation Neutrino has mass Old Standard Model (SM) had only left-handed ν e,µ,τ L Oscillation experiments : νl α νβ L : m ν 0.1eV A renormalizable theory for mass requires adding: Right-handed Neutrino (NR i.) OR Higgs triplet If Supersymmetry and NR i. then right-handed sneutrino Dark Matter WMAP result (2003) Ω mh 2 = 0.135 +0.008 0.009 ; h2 0.5 If Ñ R LSP... overclose the universe?... Dark Matter? Is it possible to test this?... Collider implications? Right-handed Sneutrino and Hadron Collider Signature

SUSY Sector Neutrino Mass Sneutrino Mass Most general (renormalizable) theory, with Lepton-# violation Superpotential W = N c Y N L H u + N c M N 2 N c + W MSSM SUSY Breaking terms L SUSYBr = l L m2 l l L Ñ R m2 NÑR + h.c. + Ñ T R Ñ R A N l L h u + h.c. b 2 N 2 ÑR + h.c. Right-handed Sneutrino and Hadron Collider Signature

Neutrino Mass Neutrino Mass Sneutrino Mass L ν mass = Nv u Y N ν N c M N 2 N + h.c. For m ν 0.1eV m ν = v 2 u Y 2 N M N If M N 10 14 GeV then Y N O(1) (Seesaw) If M N 10 2 GeV then Y N 10 6 If no M N term then Y N 10 12 (Dirac ν) [Asaka et al. 05] Right-handed Sneutrino and Hadron Collider Signature

Sneutrino mass matrix Neutrino Mass Sneutrino Mass ( L ν mass = ν L Ñ R ν T L Ñ T R ) M ν ν L Ñ R ν L Ñ R From now assume as real : m 2 LL, m2 RR, m2 RL, c l, b 2 N Redefine: ν L = ( ν 1 + i ν 2 )/ 2 Ñ R = (Ñ 1 + iñ 2 )/ 2 Right-handed Sneutrino and Hadron Collider Signature

Mass matrix becomes... Neutrino Mass Sneutrino Mass L ν mass = 1 2 M r ν = ` ν T 1 Ñ T 1 ν T 2 0 1 ν 1 Ñ2 T BÑ 1 C Mr ν @ ν 2 A Ñ 2 0 mll 2 c l mrl 2 T + vuy T 1 N M N 0 0 BmRL 2 + vum N Y N mrr 2 b2 N 0 0 @ 0 0 mll 2 + c l mrl 2 T vuy C N T M A N 0 0 mrl 2 vum N Y N mrr 2 + b2 N [Hirsch et al., Grossman et al. 97] Right-handed Sneutrino and Hadron Collider Signature

Diagonalization Neutrino Mass Sneutrino Mass ( ) νi Ñ i ( cos θ ν = i sin θ ν i sin θ ν i cos θ ν i ) ( ) ν i ; s i sin θ ν i Mixing angle is: 2 µ v d Y N + v u A N ± v u M tan 2θ ν N Y N i = (mll 2 c l) (mrr 2 b2 N ) Assume: A N a N Y N m l ; s 1 Y N v u m l α m Ñ i Y N 10 6 ; A N a N 0.1 MeV ; s 1 10 6 α m ; ν 0 Ñ 1 Right-handed Sneutrino and Hadron Collider Signature

Diagonalization Neutrino Mass Sneutrino Mass ( ) νi Ñ i ( cos θ ν = i sin θ ν i sin θ ν i cos θ ν i ) ( ) ν i ; s i sin θ ν i Mixing angle is: 2 µ v d Y N + v u A N ± v u M tan 2θ ν N Y N i = (mll 2 c l) (mrr 2 b2 N ) Assume: A N a N Y N m l ; s 1 Y N v u m l α m Ñ i Y N 10 6 ; A N a N 0.1 MeV ; s 1 10 6 α m ; ν 0 Ñ 1 Right-handed Sneutrino and Hadron Collider Signature

Boltzmann Equation Thermalization Big Bang Inflation BBN Today Thermal equilibrium if σv SI n ν0 > 3H Freeze-out 0.01 0.001 0.0001 1 10 100 1000 Ω 0 n 0M ρ c 4 10 10 ( GeV 2 σv [Kolb & Turner, Early Universe] ) Right-handed Sneutrino and Hadron Collider Signature

When is ν 0 Thermal? Thermalization σv n > 3H Self-interaction processes (a s ) ν 0 ν 0 ν L ν L W 3 ; B exchange (d s ) ν 0 ν 0 ν L ν L ; e L e L H + u ; H 0 u exchange Process Cross-section Limit ( ) s1 (a s ) 4 g 2 16π M + g 2 2 W M α m Y N > 10 3 ( B ) YN (d s ) 4 2 c4 1 me 16π M LSP Y N > 10 3 1 M 2 H Right-handed Sneutrino and Hadron Collider Signature

When is ν 0 Thermal? Thermalization σv n > 3H Self-interaction processes (a s ) ν 0 ν 0 ν L ν L W 3 ; B exchange (d s ) ν 0 ν 0 ν L ν L ; e L e L H + u ; H 0 u exchange Process Cross-section Limit ( ) s1 (a s ) 4 g 2 16π M + g 2 2 W M α m Y N > 10 3 ( B ) YN (d s ) 4 2 c4 1 me 16π M LSP Y N > 10 3 1 M 2 H Right-handed Sneutrino and Hadron Collider Signature

Thermalization Thermalization Thermalization conditions not met Nonthermal ν 0 Ñ R interacts only through tiny Yukawa, so Nonthermal for: Y N 10 6 i.e., ν 0 is almost pure right-handed Low Reheat temp T RH < 100 GeV ; Reheat into ν 0 + SM [S.G., Porod, de Gouvea, hep-ph/0602027 - JCAP] Right-handed Sneutrino and Hadron Collider Signature

Tevatron and LHC Signatures Unique features Heavier SUSY decays thro Y N (tiny?)... Disp vtx? All SUSY decays must have a lepton (charged or neutrino) Expect non-universality in e, µ, τ events 3 gens of Ñ R... Cascade decays give leptons (how soft?) At hadron colliders look for: q q / g g t t, g g,... Monte Carlo Program: Pythia 6.327: With modification to include angular dep of 3-body stop decays [Special thanks to Stephen Mrenna & Peter Skands for help with Pythia] Right-handed Sneutrino and Hadron Collider Signature

Tevatron and LHC Signatures Unique features Heavier SUSY decays thro Y N (tiny?)... Disp vtx? All SUSY decays must have a lepton (charged or neutrino) Expect non-universality in e, µ, τ events 3 gens of Ñ R... Cascade decays give leptons (how soft?) At hadron colliders look for: q q / g g t t, g g,... Monte Carlo Program: Pythia 6.327: With modification to include angular dep of 3-body stop decays [Special thanks to Stephen Mrenna & Peter Skands for help with Pythia] Right-handed Sneutrino and Hadron Collider Signature

t R production and decay q t g t g γ, Z q ( iyn P ij L ) ( iyu * 33 P R ) ~ H + u ~ t R b L e L j ~ N R i Level 1 cuts: The rapidity cuts η l < 2.5, η b < 2.5. The transverse momentum cuts p T l > 20 GeV, p T b > 10 GeV. The isolation cut R bl > 0.4, where R 2 bl (φ b φ l ) 2 + (η b η l ) 2 Right-handed Sneutrino and Hadron Collider Signature

t R production and decay q t g t g γ, Z q ( iyn P ij L ) ( iyu * 33 P R ) ~ H + u ~ t R b L e L j ~ N R i Level 1 cuts: The rapidity cuts η l < 2.5, η b < 2.5. The transverse momentum cuts p T l > 20 GeV, p T b > 10 GeV. The isolation cut R bl > 0.4, where R 2 bl (φ b φ l ) 2 + (η b η l ) 2 Right-handed Sneutrino and Hadron Collider Signature

t R production and decay : Disp Vtx 0.16 0.14 stop Disp Vtx (ctau = 10 mm) stop 150 dtvx stop 300 dtvx 0.14 0.12 stop Disp Vtx (ctau = 10 mm) stop 150 dtvx stop 300 dtvx 0.12 0.1 0.1 0.08 0.06 0.08 0.06 0.04 0.04 0.02 0.02 0 0 5 10 15 20 25 dtvx (mm) 0 0 5 10 15 20 25 dtvx (mm) Right-handed Sneutrino and Hadron Collider Signature

p T distributions b p T 0.045 0.04 0.035 stop 150 top stop 300 0.05 0.045 0.04 stop 150 top stop 300 b pt b pt 0.03 0.025 0.02 0.015 0.035 0.03 0.025 0.02 0.015 0.01 0.01 0.005 0.005 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 pt pt l p T 0.045 0.04 0.035 stop 150 top stop 300 0.05 0.045 0.04 stop 150 top stop 300 E pt E pt 0.03 0.025 0.02 0.015 0.035 0.03 0.025 0.02 0.015 0.01 0.01 0.005 0.005 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 pt pt Right-handed Sneutrino and Hadron Collider Signature

distributions cos(θ bl ) 3 2.5 cos(th)_be stop 150 top stop 300 3.5 3 cos(th)_be stop 150 top stop 300 2 2.5 2 1.5 1.5 1 1 0.5 0.5 0 0-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 cos(th) cos(th) p T miss 0.02 0.018 0.016 stop 150 mpt top mpt stop 300 mpt 0.018 0.016 0.014 stop 150 mpt top mpt stop 300 mpt missing pt missing pt 0.014 0.012 0.01 0.008 0.006 0.012 0.01 0.008 0.006 0.004 0.004 0.002 0.002 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 pt miss pt miss Right-handed Sneutrino and Hadron Collider Signature

Tevatron and LHC Top M tr = 150 M tr = 175 M tr = 250 M tr = 500 M tr = 750 σ(pb) α # (for 1 fb 1 ) S/ B(for 1 fb 1 ) L(fb 1 for 5 σ) Tevatron 5.6 0.79 8 - - LHC 488 0.7 484 - - Tevatron 1.04 0.29 17 6 0.7 LHC 167 0.24 1947 88 0.003 Tevatron 0.42 0.47 18 6.6 0.57 LHC 81.8 0.43 3062 139 0.001 Tevatron 0.04 0.71 4 1.4 12.7 LHC 14.65 0.66 1292 58 0.007 LHC 0.37 0.81 49 2.22 5.1 LHC 0.03 0.85 4.3 0.19 692 Right-handed Sneutrino and Hadron Collider Signature

Conclusions Pure right-handed ν investigated here When SUSY breaking, Majorana mass at weak scale; Y N 10 6 Nonthermal dark matter candidate Tevatron and LHC Signatures Look for nonuniversal lepton signature Right-handed Sneutrino and Hadron Collider Signature

Backup Slides Backup Slides Right-handed Sneutrino and Hadron Collider Signature

Sneutrino mass matrix ( L ν mass = ν L Ñ R ν T L Ñ T R ) M ν ν L Ñ R ν L m M ν = 1 LL 2 m 2 RL vu 2 c l v u Y N M N m RL 2 mrr 2 v u MN T Y N b 2 N 2 vu 2 c l v u YN T M N mll 2 mrl 2 T v u M N Y N bn 2 mrl 2 mrr 2 Ñ R m 2 LL = (m 2 l + v 2 u Y N Y N + 2 ν) ; 2 ν = (m 2 Z /2) cos 2β m 2 RR = (M N M N + m 2 N + v 2 u Y N Y N ) m 2 RL = ( µ v d Y N + v u A N ) Right-handed Sneutrino and Hadron Collider Signature

Real fields Mixing effects m 2 RL : ν L Ñ R mixing c l : ν L ν L mixing M N : ν L Ñ R mixing b 2 N : Ñ R Ñ R mixing From now assume as real : m 2 LL, m2 RR, m2 RL, c l, b 2 N Redefine: ν L = ( ν 1 + i ν 2 )/ 2 Ñ R = (Ñ 1 + iñ 2 )/ 2 Right-handed Sneutrino and Hadron Collider Signature

Mass matrix becomes... 0 1 ν 1 L ν mass = 1 ` ν T 2 1 Ñ1 T ν 2 T Ñ2 T BÑ 1 C Mr ν @ ν 2 A Ñ 2 0 mll 2 c l mrl 2 T + vuy T 1 N M N 0 0 M r ν = BmRL 2 + vum N Y N mrr 2 b2 N 0 0 @ 0 0 mll 2 + c l mrl 2 T vuy C N T M A N 0 0 mrl 2 vum N Y N mrr 2 + b2 N [Hirsch et al., Grossman et al. 97] c l, b N and M N split ν 1 ν 2 degeneracy, and Ñ 1 Ñ 2 degeneracy Denote LSP as ν 0 ; Heavy states as ν H Bose symmetry forbids Z ν 0 ν 0 coupling leads to acceptable relic density [Hall et al. 97] Right-handed Sneutrino and Hadron Collider Signature

Thermal History of the Universe Big Bang Inflation BBN Today Hubble rate: H ȧ a ; H = 1.66 g T 2 H2 = 8πG 3 ρ M Pl (Rad Dom) Right-handed Sneutrino and Hadron Collider Signature

Boltzmann Equation Big Bang Inflation BBN Today d dt n ν 0 = 3Hn ν0 σv SI n 2 ν 0 n 2 ν 0 eq σv CI `n ν0 n φ n ν0 eqn φ eq + CΓ Thermal equilibrium if σv SI n ν0 > 3H ; σv CI n φ > 3H Freeze-out 0.01 0.001 0.0001 1 10 100 1000 Ω 0 n 0M ρ c [Kolb & Turner, Early Universe] 4 10 10 GeV 2 σv Right-handed Sneutrino and Hadron Collider Signature

Mixed ν 0 Dark Matter ~ N 1 ~ N 1 (ig s 2 1P R ) W ~ 3 c W ~ 3 (ig s 2 1P R ) ν ν Ω 0 h 2 = 10 4 s 4 1 8" < g 2 :!!# 9 2 1 100 GeV + g 2 100 GeV = M W M B ; s 1 0.2 results in observed relic density Right-handed Sneutrino and Hadron Collider Signature

Relic from Decays Contribution from C Γ n χ Γ (χ ν 0 X ) H u ν 0 L Ω 0 (ad )h 2 10 26 c1 2Y N 2 MLSP M f 2 H PS ν H ν 0 ψψ h u exchange Ω 0 (bd )h 2 = 10 24 (c 2 1 s2 1 )2 Y 2 c A 2 N M ν H MLSP f 2 Mhu 4 3PS Does not overclose if Y N 10 13 ; A N 10 ev ; s 1 10 12 (Decays just before BBN!) Dirac case [Asaka et al. 05] Right-handed Sneutrino and Hadron Collider Signature

When is ν 0 Thermal? σv n > 3H Self-interaction processes (a s ) ν 0 ν 0 ν L ν L W 3 ; B exchange (d s ) ν 0 ν 0 ν L ν L ; e L e L H + u ; H 0 u exchange Process Cross-section Limit ( ) s1 (a s ) 4 g 2 16π M + g 2 2 W M α m Y N > 10 3 ( B ) YN (d s ) 4 2 c4 1 me 16π M LSP Y N > 10 3 1 M 2 H Right-handed Sneutrino and Hadron Collider Signature

When is ν 0 Thermal? σv n > 3H Self-interaction processes (a s ) ν 0 ν 0 ν L ν L W 3 ; B exchange (d s ) ν 0 ν 0 ν L ν L ; e L e L H + u ; H 0 u exchange Process Cross-section Limit ( ) s1 (a s ) 4 g 2 16π M + g 2 2 W M α m Y N > 10 3 ( B ) YN (d s ) 4 2 c4 1 me 16π M LSP Y N > 10 3 1 M 2 H Right-handed Sneutrino and Hadron Collider Signature

When is ν 0 Thermal? Co-interaction processes with other SUSY particles Boltzmann suppressed by β φ e ( M φ/t ) ; M φ (M φ M LSP ) Co-interaction with SUSY (b c ) ν 0 s ẽ L s W ± exchange (e c ) ν 0 ν H cc ; tt h u exchange Process Cross-section Limit (b c ) (e c ) g 4 s 2 1 16π (c 2 1 s2 1 )2 Y 2 u 16π 2 M LSP MZ 4 1 M 2 hu fps 2 β s α m f PS Y N > 10 6.5 ( ) 2 AN M hu f 2 PS Y u β νh α m f PS Y N > 10 7 Right-handed Sneutrino and Hadron Collider Signature

When is ν 0 Thermal? Co-interaction with SM (a M ) ν 0 t R,L ν L t L,R h u exchange (b M ) ν 0 t L ν L t R H u exchange Process Cross-section Limit (a M ) (b M ) A 2 N Y t 2 1 16π f 2 Mhu 4 PS YN 2Y t 2 1 16π f 2 M 2 H PS β t α m f PS Y N > 10 7 β t f PS Y N > 10 7 Right-handed Sneutrino and Hadron Collider Signature

Nonthermal ν 0 Thermalization conditions not met Nonthermal ν 0 Happens when : Y N 10 6 i.e., ν 0 is almost pure right-handed Low Reheat temp T RH < 100 GeV ; Reheat into ν 0 + SM No Relic-from-decay of heavier SUSY particles No ν 0 thermalization from co-interaction with SUSY or Top Ñ Relic density depends on Inflaton coupling to SM and Ñ Work in progress Right-handed Sneutrino and Hadron Collider Signature

Nonthermal ν 0 Thermalization conditions not met Nonthermal ν 0 Happens when : Y N 10 6 i.e., ν 0 is almost pure right-handed Low Reheat temp T RH < 100 GeV ; Reheat into ν 0 + SM No Relic-from-decay of heavier SUSY particles No ν 0 thermalization from co-interaction with SUSY or Top Ñ Relic density depends on Inflaton coupling to SM and Ñ Work in progress Right-handed Sneutrino and Hadron Collider Signature