Math 203A - Solution Set 3

Similar documents
Math Midterm Solutions

PROBLEMS, MATH 214A. Affine and quasi-affine varieties

Math 203A - Solution Set 1

MATH 631: ALGEBRAIC GEOMETRY: HOMEWORK 1 SOLUTIONS

ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes!

Math 203A - Solution Set 1

Projective Varieties. Chapter Projective Space and Algebraic Sets

CHEVALLEY S THEOREM AND COMPLETE VARIETIES

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

Math 203A - Solution Set 1

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES

LECTURE Affine Space & the Zariski Topology. It is easy to check that Z(S)=Z((S)) with (S) denoting the ideal generated by elements of S.

Math 203, Solution Set 4.

Math 418 Algebraic Geometry Notes

Pure Math 764, Winter 2014

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE ABOUT VARIETIES AND REGULAR FUNCTIONS.

Math 214A. 1 Affine Varieties. Yuyu Zhu. August 31, Closed Sets. These notes are based on lectures given by Prof. Merkurjev in Winter 2015.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

D-MATH Algebraic Geometry FS 2018 Prof. Emmanuel Kowalski. Solutions Sheet 1. Classical Varieties

Introduction to Arithmetic Geometry Fall 2013 Lecture #15 10/29/2013

10. Smooth Varieties. 82 Andreas Gathmann

This is a closed subset of X Y, by Proposition 6.5(b), since it is equal to the inverse image of the diagonal under the regular map:

DIVISORS ON NONSINGULAR CURVES

INTRODUCTION TO ALGEBRAIC GEOMETRY. Throughout these notes all rings will be commutative with identity. k will be an algebraically

φ(xy) = (xy) n = x n y n = φ(x)φ(y)

MATH 221 NOTES BRENT HO. Date: January 3, 2009.

ALGEBRAIC GEOMETRY (NMAG401) Contents. 2. Polynomial and rational maps 9 3. Hilbert s Nullstellensatz and consequences 23 References 30

MATH32062 Notes. 1 Affine algebraic varieties. 1.1 Definition of affine algebraic varieties

Reid 5.2. Describe the irreducible components of V (J) for J = (y 2 x 4, x 2 2x 3 x 2 y + 2xy + y 2 y) in k[x, y, z]. Here k is algebraically closed.

3. The Sheaf of Regular Functions

Algebraic Geometry. 1 4 April David Philipson. 1.1 Basic Definitions. 1.2 Noetherian Rings

Algebraic Geometry. Instructor: Stephen Diaz & Typist: Caleb McWhorter. Spring 2015

Summer Algebraic Geometry Seminar

Dimension Theory. Mathematics 683, Fall 2013

NONSINGULAR CURVES BRIAN OSSERMAN

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Resolution of Singularities in Algebraic Varieties

14. Rational maps It is often the case that we are given a variety X and a morphism defined on an open subset U of X. As open sets in the Zariski

ALGEBRA QUALIFYING EXAM, WINTER SOLUTIONS

Institutionen för matematik, KTH.

Algebraic Varieties. Chapter Algebraic Varieties

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u.

Algebraic Geometry. Andreas Gathmann. Class Notes TU Kaiserslautern 2014

4. Images of Varieties Given a morphism f : X Y of quasi-projective varieties, a basic question might be to ask what is the image of a closed subset

214A HOMEWORK KIM, SUNGJIN

Math 120 HW 9 Solutions

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Algebraic Geometry. Contents. Diane Maclagan Notes by Florian Bouyer. Copyright (C) Bouyer 2011.

AN INTRODUCTION TO AFFINE SCHEMES

ALGEBRAIC GEOMETRY CAUCHER BIRKAR

HARTSHORNE EXERCISES

MATH 8254 ALGEBRAIC GEOMETRY HOMEWORK 1

R S. with the property that for every s S, φ(s) is a unit in R S, which is universal amongst all such rings. That is given any morphism

Exercise Sheet 3 - Solutions

Factorization in Integral Domains II

Extension theorems for homomorphisms

Math 203A - Solution Set 4

Math 40510, Algebraic Geometry

Math 145. Codimension

4.5 Hilbert s Nullstellensatz (Zeros Theorem)

12. Linear systems Theorem Let X be a scheme over a ring A. (1) If φ: X P n A is an A-morphism then L = φ O P n

PRACTICE PROBLEMS: SET 1

A course in. Algebraic Geometry. Taught by Prof. Xinwen Zhu. Fall 2011

Chapter 1. Affine algebraic geometry. 1.1 The Zariski topology on A n

ALGEBRAIC GEOMETRY HOMEWORK 3

From now on we assume that K = K.

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY

Math 121 Homework 3 Solutions

Rings and groups. Ya. Sysak

Algebraic Geometry: MIDTERM SOLUTIONS

12. Hilbert Polynomials and Bézout s Theorem

Commutative Algebra. Andreas Gathmann. Class Notes TU Kaiserslautern 2013/14

2. Intersection Multiplicities

Another way to proceed is to prove that the function field is purely transcendental. Now the coordinate ring is

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35

Math 121 Homework 2 Solutions

Local properties of plane algebraic curves

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra

Homework 6 Solution. Math 113 Summer 2016.

Elliptic Curves Spring 2017 Lecture #5 02/22/2017

Dedekind Domains. Mathematics 601

MAS 6396 Algebraic Curves Spring Semester 2016 Notes based on Algebraic Curves by Fulton. Timothy J. Ford April 4, 2016

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

but no smaller power is equal to one. polynomial is defined to be

Chapter 8. P-adic numbers. 8.1 Absolute values

where c R and the content of f is one. 1

MATH 326: RINGS AND MODULES STEFAN GILLE

g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series.

The Proj Construction

Introduction to Arithmetic Geometry Fall 2013 Lecture #24 12/03/2013

9. Birational Maps and Blowing Up

POLYNOMIAL IDENTITY RINGS AS RINGS OF FUNCTIONS

Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013

Arithmetic Algebraic Geometry

φ(a + b) = φ(a) + φ(b) φ(a b) = φ(a) φ(b),

Spring 2016, lecture notes by Maksym Fedorchuk 51

NOTES ON FINITE FIELDS

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism

Transcription:

Math 03A - Solution Set 3 Problem 1 Which of the following algebraic sets are isomorphic: (i) A 1 (ii) Z(xy) A (iii) Z(x + y ) A (iv) Z(x y 5 ) A (v) Z(y x, z x 3 ) A Answer: We claim that (i) and (v) are isomorphic, (ii) and (iii) are isomorphic, and (iv) is not isomorphic to any other algebraic sets We check (i) and (v) are isomorphic Note first that Define the morphisms and Then Z(y x, z x 3 ) = {(t, t, t 3 ) t C} f : A 1 Z(y x, z x 3 ), f(t) = (t, t, t 3 ), g : Z(y x, z x 3 ) A 1, g(x, y, z) = x f g = identity g f = identity Thus f and g are inverse isomorphisms We show (ii) and (iii) are isomorphic Consider the morphisms f : A A, f(x, y) = (x + iy, x iy), ( x + y g : A A, g(x, y) =, x y ) i It is easy to check that Moreover, letting we claim that Indeed, if (x, y) Z, then f g = identity g f = identity Z = Z(x + y ) and W = Z(xy), f(z) W, g(w ) Z f(x, y) = (x iy, x + iy) W since (x iy)(x + iy) = x + y = 0 Similarly, if (x, y) W, then ( x + y g(x, y) =, x y ) ( ) x + y ( ) x y Z, since + = 0 i i Therefore, f and g establish isomorphisms between Z and W We show that (i) and (ii) are not isomorphic Indeed, Z(xy) is the union of two lines, hence it is a reducible affine set On the other hand, A 1 is irreducible, hence it cannot be isomorphic to Z(xy) 1

We show (ii) and (iv) cannot be isomorphic This follows by the same argument observing that Z(x y 5 ) is irreducible Indeed, it suffices to prove that the polynomial x y 5 is irreducible Assuming the contrary, write x y 5 = f 1 (x, y)f (x, y) Regarding f 1, f as polynomials in x with coefficients in the integral domain k[y], we conclude that f 1, f can have degree at most with respect to x In fact, it is clear that the combination of degrees (0, ) cannot occur If the degrees are 1, we may assume Then Therefore, f 1 (x, y) = x g(y), f (x, y) = x h(y) x y 5 = x x (g(y) + h(y)) + g(y)h(y) g(y) = h(y), and y 5 = g(y)h(y) = g(y) This is clearly impossible, proving our claim We show that (i) and (iv) cannot be isomorphic Letting t be the coordinate of A 1, we show that there cannot be an ismorphism Indeed, set We must have Φ : k[x, y]/(x y 5 ) k[t] Φ(x) = p, Φ(y) = q p = q 5 This implies that all irreducible factors appearing in q have even exponent, so q = r, p = r 5 for some polynomial r Note that r cannot be constant since otherwise the image of Φ would have to consist in constant polynomials Now since Φ is surjective, there is a polynomial f = i,j a ij x i y j such that Φ(f) = r This means that a ij r 5i+j = r ij In particular, since the left hand side must be divisible by r, we have a 00 = 0 However, since 5i + j for (i, j) (0, 0), the left hand side is in fact divisible by r, so it cannot equal r This contradiction shows that an isomorphism Φ cannot exist Problem Show that X = A \{(0, 0)} cannot be isomorphic to an affine algebraic set: (i) Show that if f : X k is a regular function on X, then f must be a polynomial in k[x, y]

(ii) If Φ : Y X is an isomorphism between an affine algebraic set Y and X, consider the composition Ψ = ι Φ, where ι : X A is the inclusion Show that the morphism Ψ induces an isomorphism on coordinate rings Conclude that Ψ must be an isomorphism, hence ι must be an isomorphism, which must be a contradiction Answer: (i) Suppose f = g(x, y)/h(x, y) is a regular function on X and g, h k[x, y], we can assume g(x, y) and h(x, y) has no nonconstant common factors Then h(x, y) must be nonzero at every point in X Therefore the vanishing locus Z(h) {(0, 0)} Taking ideals and using the Nullstellensatz, we obtain (x, y) (h) This implies that x n (h), y m (h) for some n, m, which in turn implies that h divides both x n and y m Therefore, h must be constant and f k[x, y] (ii) Note that g is a regular function on Y g Φ 1 is a regular function on X g Φ 1 k[x, y] by (i) Letting P = g Φ 1, we have g = P Ψ for some polynomial P k[x, y] Thus, Ψ induces an isomorphism between the coordinate ring of Y and k[x, y] proving that Ψ : Y = A is an isomorphism In turn, this means ι : X = A is an isomorphism This is impossible because ι : X A is not bijective Problem 3 Let X A n and Y A m be affine algebraic sets (i) Show that X Y is an affine algebraic set (in such a fashion that its Zariski topology is the subspace topology from A n+m ) (ii) Show that if X and Y are irreducible, then X Y is also irreducible (iii) Show that X Y is a product in the category of affine algebraic sets eg it satisfies the following universal proprety: for every affine algebraic set Z and morphisms f : Z X and g : Z Y, there exists a unique morphism h : Z X Y such that h π X = f and h π Y = g (iv) Conclude that A(X Y ) = A(X) k A(Y ) Answer: (i) Let X A n and Y A m be affine algebraic sets such that X = Z(f 1,, f r ), Y = Z(g 1,, g s ) where f i k[x 1, X,, X n ] and g j k[y 1, Y,, Y m ] We regard f i and g j as polynomials in the variables X 1,, X n, Y 1,, Y m We see that that X Y = Z(f 1,, f r, g 1,, g s ) A n+m 3

4 This shows that X Y is an affine algebraic set (ii) We show that I(X Y ) is prime Let us write x for the collection of the x i, and y for the collection of the y i Let f, g k[x, y] be polynomial functions such that fg vanishes on X Y ; we have to show that either f or g vanishes on all of X Y, ie that X Y Z(f) or X Z(g) Let us assume that there is a point (P, Q) X Y \ Z(f), where P X and Q Y Denote by f(, Q) k[x] the polynomial obtained from f k[x, y] by setting y = Q For all P 0 X \ Z(f(, Q)) we must have Y Z(f(P 0, )g(p 0, )) = Z(f(P 0, )) Z(g(P 0, )) As Y is irreducible and Y Z(f(P 0, )) by the choice of P 0, it follows that Y = Z(g(P 0, )) This is true for all P 0 X \ Z(f(, Q)), so we conclude that (X \ Z(f(, Q)) Y Z(g) But as Z(g) is closed, it must in fact contain the closure of (X \ Z(f(, Q)) Y as well This closure equals X Y as X is irreducible and X \ Z(f(, Q)) is a non-empty open subset of X (iii) It is clear that the morphism h is defined set theoretically as h(p) = (f(p), g(p)) To define h algebraically we will proceed somewhat differently First, the morphism f : Z X corresponds to a k-algebra homomorphism f : k[x 1,, x n ]/I(X) A(Z), denoted by the same letter This in turn is determined by giving the images f i = f(x i ) A(Z) of the generators x i, satisfying the relations of I(X) The same is true for g, which is determined by the images g i = g(y i ) A(Z) Now it is obvious that the elements f i and g i determine a k-algebra homomorphism k[x 1, x n, y 1 y m ]/(I(X) + I(Y )) A(Z) which determines a morphism h : Z X Y (iv) The universal property of X Y corresponds on the level of coordinate rings to the universal property of the tensor product Also, one may directly observe that A(X Y ) = k[x, y]/(i(x) + I(Y )) = k[x]/i(x) k[y]/i(y ) = A(X) k A(Y ) Problem 4 Let n, and let S = {a 1,, a n } be a finite set with n elements in A 1 (i) Show that the quasi-affine set A 1 \ S is isomorphic to an affine set For instance, you may take X to be the affine algebraic set given by the equations X 1 (X 0 a 1 ) = = X n (X 0 a n ) = 1 Show that the projection onto the first coordinate is an isomorphism π : X A 1 \ S, (X 0,, X n ) X 0

(ii) Show that the ring of regular functions on A 1 \ {0} is isomorphic to k [ t, 1 t ], the ring of polynomials in t and 1 t (iii) Show that A 1 \ S is not isomorphic to A 1 \ {0} by proving that their rings of regular functions are not isomorphic Answer: (i) If (X 0,, X n ) X we have X i (X 0 a i ) = 1 hence X 0 a i for all 1 i n Therefore π : X A 1 \ S is well defined Let φ : A 1 \ S X, t ( 1 t,,, t a 1 1 t a n Both π and φ are rational maps, regular everywhere It is clear that π φ = identity and φ π = identity Therefore, π and φ are inverse isomorphisms (ii) It is clear that t and 1 t are both regular functions on A1 \ {0}, and so is any polynomial in t and 1 t Conversely, let f K(A1 \ {0}) View f as a rational function on A 1 Consider the ideal of denominators I f of the function f on A 1 Clearly Therefore ) Z(I f ) {0} = t I f = t n I f = t n f k[t] f = g(t) t n m = a i t i n i=0 The last expression is a polynomial in t and 1 t (iii) Assume there is an isomorphism Since it follows that Writing Φ : A(X) k[t, t 1 ] X i (X 0 a i ) = 1 in A(X), Φ(X i )Φ(X 0 a i ) = 1 Φ(X i ) = g i(t), Φ(X 0 a i ) = h i(t), t α i for some polynomials g i, h i, we obtain g i (t)h i (t) = t α i+β i This implies that h i is of the form ct m, or equivalently Φ(X 0 a i ) = c i t m i for some m i Z and c i k Subtracting the relations for i and j, it follows that t β i a j a i = Φ(a j a i ) = c j t m j c i t m i 5

6 Comparing degrees, we see that this implies m i = m j = 0, as a i a j for i j In turn, we obtain Φ(X 0 a i ) = c i Since Φ(c i ) = c i, we contradicted the injectivity of Φ This shows that Φ cannot be an isomorphism completing the proof Problem 5 Let n Consider the affine algebraic sets in A : Z n = Z(y n x n+1 ) and W n = Z(y n x n (x + 1)) Show that Z n and W n are birational but not isomorphic (i) Show that f : A 1 Z n, f(t) = (t n, t n+1 ) is a morphism of affine algebraic sets which establishes an isomorphism between the open subsets A 1 \ {0} Z n \ {(0, 0)} Similarly, show that g : A 1 W n, g(t) = (t n 1, t n+1 t) is a morphism of affine algebraic sets Find open subsets of A 1 and W n where g becomes an isomorphism (ii) Using (i), explain why Z n and W n are birational Write down a birational isomorphism between Z n W n (iii) Assume that there exists an isomorphism h : Z n W n such that h((0, 0)) = (0, 0) Observe that this induces an isomorphism between the open sets Z n \ {(0, 0)} W n \ {(0, 0)} Use part (i) and the previous problem to conclude this cannot be true if n (iv) Repeat the argument above without the assumption that h sends the origin to itself You may need to prove a stronger version of Problem 4 (v) Show that Z 1 and W 1 are isomorphic Write down an isomorphism between them Answer: (i) It is clear that f : A 1 Z n, t (t n, t n+1 ) is a well defined morphism Consider the morphism given by f 1 : Z n \ {0} A 1 \ {0} (x, y) y x A direct computation shows that f 1 is the inverse morphism of f Similarly, g : A 1 W n, t (t n 1, t n+1 t)

7 is a well defined morphism Its inverse morphism is g 1 : W n \ {0} A 1 \ S, (x, y) y x Here, S is the set of all n roots of unity The two morphisms g and g 1 establish an isomorphism between A 1 \ S W n \ {0} (ii) Part (i) shows that both Z n and W n are birational to A 1 so they are birational to each other An explicit birational isomorphism is A direct computation shows ( y g f 1 n (x, y) = g f 1 : Z n W n x n, yn+1 x n+1 y x (iii) If h : Z n W n is an isomorphism sending the origin to itself, then h : Z n \ {0} W n \ {0} is also an isomorphism By part (i), g 1 h f induces an isomorphism between the quasi-affine sets A 1 \ {0} A 1 \ S Such an isomorphism cannot exist by Problem 1 (v) Let F : Z 1 W 1, (x, y) (x, y + x) This is an isomorphism between Z 1 and W 1 with inverse F 1 (x, y) = (x, y x) Problem 6 Let λ k \ {0, 1} Consider the cubic curve E λ A given by the equation y x(x 1)(x λ) = 0 Show that E λ is not birational to A 1 In fact, show that there are no non-constant rational maps F : A 1 E λ (i) Write ( f(t) F (t) = g(t), p(t) ) q(t) where the pairs of polynomials (f, g) and (p, q) have no common factors Conclude that p f(f g)(f λg) = q g 3 is an equality of fractions that cannot be further simplified Conclude that f, g, f g, g λg must be perfect squares (ii) Prove the following: Lemma: If f, g are polynomials in k[t] without common factors and such that there is a constant λ 0, 1 for which f, g, f g, f λg are perfect squares, then f and g must be constant )

8 Answer: (i) We have p f(f g)(f λg) = q g 3 Since p, q are relatively prime, the right hand side cannot be further simplified Similarly, f, g, f g, f λg cannot have any common factors Indeed, a common factor for instance of f and f g, will necessarily have to divide f (f g) = g as well But this is impossible since f and g are coprime Therefore the right hand side cannot be further simplied as well Thus, for some constant a k, we must have ap = f(f g)(f λg), aq = g 3 The exponents of the irreducible factors of the left hand sides of the above equations must be even Therefore, the same must be true about the right hand side This immediately implies that g is a square But since f, f g, f λg have no common factors, it follows that the exponents of the irreducible factors of each f, f g and f λg must be even as well Thus f, f g, f λg must be squares (ii) Pick f and g such that max(deg f, deg g) is minimal among all pairs (f, g) which satisfy the requirement that f, g, f g, f λg are squares for some λ 0, 1 We may assume that f, g are coprime since otherwise we can reduce their degree by dividing by their gcd which is also a square Write where u, v are coprime Then f = u, g = v, f g = (u v)(u + v) is a square Note that u v and u + v cannot have common factors since such factors will have to divide both 1 ((u v) + (u + v)) = u and 1 ((u v) (u + v)) = v which is assumed to be false Thus u v and u + v are coprime, and since their product f g is a square, it follows that u v, u + v must be square The same argument applied to f λg = (u λv)(u + λv) shows that u λv, u + λv are squares Let ũ = 1 + λ λ 1 (u + v), ṽ = (u v) Clearly, ũ, ṽ are squares A direct computation shows that ũ ṽ = u + λv, which is also a square Finally, ( 1 + ) λ ũ 1 ṽ = 1 + λ λ 1 λ (u λv)

is a square Setting ( 1 + ) λ µ = 1, λ we see that ũ, ṽ, ũ ṽ, ũ µṽ are squares Note that µ 0, 1 for λ 0, 1 Furthermore, max(deg ũ, deg ṽ) = 1 max(deg f, deg g) Unless f and g are irreducible, this contradicts the assumption that f, g are of minimal degree 9