AN IMPROVED APPROACH FOR MEASUREMENT EFFICIENCY OF DEA AND ITS STABILITY USING LOCAL VARIATIONS

Similar documents
A Slacks-base Measure of Super-efficiency for Dea with Negative Data

Sensitivity and Stability Radius in Data Envelopment Analysis

Classifying inputs and outputs in data envelopment analysis

Equivalent Standard DEA Models to Provide Super-Efficiency Scores

ABSTRACT INTRODUCTION

A DIMENSIONAL DECOMPOSITION APPROACH TO IDENTIFYING EFFICIENT UNITS IN LARGE-SCALE DEA MODELS

Data envelopment analysis

Subhash C Ray Department of Economics University of Connecticut Storrs CT

Sensitivity and Stability Analysis in Uncertain Data Envelopment (DEA)

Finding the strong defining hyperplanes of production possibility set with constant returns to scale using the linear independent vectors

A DEA- COMPROMISE PROGRAMMING MODEL FOR COMPREHENSIVE RANKING

Groups performance ranking based on inefficiency sharing

INEFFICIENCY EVALUATION WITH AN ADDITIVE DEA MODEL UNDER IMPRECISE DATA, AN APPLICATION ON IAUK DEPARTMENTS

Symmetric Error Structure in Stochastic DEA

Further discussion on linear production functions and DEA

A ratio-based method for ranking production units in profit efficiency measurement

Ranking Decision Making Units with Negative and Positive Input and Output

The Comparison of Stochastic and Deterministic DEA Models

Determination of Economic Optimal Strategy for Increment of the Electricity Supply Industry in Iran by DEA

Author Copy. A modified super-efficiency DEA model for infeasibility. WD Cook 1,LLiang 2,YZha 2 and J Zhu 3

PRIORITIZATION METHOD FOR FRONTIER DMUs: A DISTANCE-BASED APPROACH

Indian Institute of Management Calcutta. Working Paper Series. WPS No. 787 September 2016

Chance Constrained Data Envelopment Analysis The Productive Efficiency of Units with Stochastic Outputs

A New Group Data Envelopment Analysis Method for Ranking Design Requirements in Quality Function Deployment

Sensitivity and Stability Analysis in DEA on Interval Data by Using MOLP Methods

Department of Economics Working Paper Series

A METHOD FOR SOLVING 0-1 MULTIPLE OBJECTIVE LINEAR PROGRAMMING PROBLEM USING DEA

Research Article A Data Envelopment Analysis Approach to Supply Chain Efficiency

A reference-searching based algorithm for large-scale data envelopment. analysis computation. Wen-Chih Chen *

Department of Social Systems and Management. Discussion Paper Series

USING LEXICOGRAPHIC PARAMETRIC PROGRAMMING FOR IDENTIFYING EFFICIENT UNITS IN DEA

A Simple Characterization

European Journal of Operational Research

Data Envelopment Analysis and its aplications

Revenue Malmquist Index with Variable Relative Importance as a Function of Time in Different PERIOD and FDH Models of DEA

Optimal weights in DEA models with weight restrictions

A New Method for Optimization of Inefficient Cost Units In The Presence of Undesirable Outputs

Data Envelopment Analysis within Evaluation of the Efficiency of Firm Productivity

Searching the Efficient Frontier in Data Envelopment Analysis INTERIM REPORT. IR-97-79/October. Pekka Korhonen

Modeling undesirable factors in efficiency evaluation

Special Cases in Linear Programming. H. R. Alvarez A., Ph. D. 1

Modeling Dynamic Production Systems with Network Structure

Evaluation of Dialyses Patients by use of Stochastic Data Envelopment Analysis

A Fuzzy Data Envelopment Analysis Approach based on Parametric Programming

Chapter 2 Output Input Ratio Efficiency Measures

Selective Measures under Constant and Variable Returns-To- Scale Assumptions

MULTI-COMPONENT RETURNS TO SCALE: A DEA-BASED APPROACH

MEASURING THE EFFICIENCY OF WORLD VISION GHANA S EDUCATIONAL PROJECTS USING DATA ENVELOPMENT ANALYSIS

Fuzzy efficiency: Multiplier and enveloping CCR models

Identifying Efficient Units in Large-Scale Dea Models

Review of Methods for Increasing Discrimination in Data Envelopment Analysis

Joint Use of Factor Analysis (FA) and Data Envelopment Analysis (DEA) for Ranking of Data Envelopment Analysis

Investigación Operativa. New Centralized Resource Allocation DEA Models under Constant Returns to Scale 1

Chapter 2 Network DEA Pitfalls: Divisional Efficiency and Frontier Projection

A Data Envelopment Analysis Based Approach for Target Setting and Resource Allocation: Application in Gas Companies

THE PERFORMANCE OF INDUSTRIAL CLUSTERS IN INDIA

A buyer - seller game model for selection and negotiation of purchasing bids on interval data

A SECOND ORDER STOCHASTIC DOMINANCE PORTFOLIO EFFICIENCY MEASURE

CENTER FOR CYBERNETIC STUDIES

EFFICIENCY ANALYSIS UNDER CONSIDERATION OF SATISFICING LEVELS

Mixed input and output orientations of Data Envelopment Analysis with Linear Fractional Programming and Least Distance Measures

52 LIREZEE, HOWLND ND VN DE PNNE Table 1. Ecient DMU's in Bank Branch Eciency Studies. Study DMU's Number Ecient Percentage verage of inputs, DMU's Ec

USING STRATIFICATION DATA ENVELOPMENT ANALYSIS FOR THE MULTI- OBJECTIVE FACILITY LOCATION-ALLOCATION PROBLEMS

Prediction of A CRS Frontier Function and A Transformation Function for A CCR DEA Using EMBEDED PCA

Efficiency Measurement Using Independent Component Analysis And Data Envelopment Analysis

Mixed 0-1 Linear Programming for an Absolute. Value Linear Fractional Programming with Interval. Coefficients in the Objective Function

Application of Rough Set Theory in Performance Analysis

Review of ranking methods in the data envelopment analysis context

PRIORITIZATION METHOD FOR FRONTIER DMUs: A DISTANCE-BASED APPROACH

Complete Closest-Target Based Directional FDH Measures of Efficiency in DEA

Data Envelopment Analysis (DEA) with an applica6on to the assessment of Academics research performance

Institute of Applied Mathematics, Comenius University Bratislava. Slovak Republic (

1 Review Session. 1.1 Lecture 2

LITERATURE REVIEW. Chapter 2

30E00300 Productivity and Efficiency Analysis Abolfazl Keshvari, Ph.D.

Novel Models for Obtaining the Closest Weak and Strong Efficient Projections in Data Envelopment Analysis

NEGATIVE DATA IN DEA: A SIMPLE PROPORTIONAL DISTANCE FUNCTION APPROACH. Kristiaan Kerstens*, Ignace Van de Woestyne**

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization

CHAPTER 3 THE METHOD OF DEA, DDF AND MLPI

Marginal values and returns to scale for nonparametric production frontiers

Production planning of fish processed product under uncertainty

Measuring the efficiency of assembled printed circuit boards with undesirable outputs using Two-stage Data Envelopment Analysis

PRINCIPAL COMPONENT ANALYSIS TO RANKING TECHNICAL EFFICIENCIES THROUGH STOCHASTIC FRONTIER ANALYSIS AND DEA

Robustness and bootstrap techniques in portfolio efficiency tests

Developing a Data Envelopment Analysis Methodology for Supplier Selection in the Presence of Fuzzy Undesirable Factors

CHAPTER 4 MEASURING CAPACITY UTILIZATION: THE NONPARAMETRIC APPROACH

Data Envelopment Analysis with metaheuristics

OPERATIONS RESEARCH. Linear Programming Problem

Measuring performance of a three-stage structure using data envelopment analysis and Stackelberg game

A New Method for Complex Decision Making Based on TOPSIS for Complex Decision Making Problems with Fuzzy Data

Using Genetic Algorithms for Maximizing Technical Efficiency in Data Envelopment Analysis

Damages to return with a possible occurrence of eco technology innovation measured by DEA environmental assessment

A Survey of Some Recent Developments in Data Envelopment Analysis

The directional hybrid measure of efficiency in data envelopment analysis

Robust Optimal Taxation and Environmental Externalities

On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems

Nonparametric production technologies with multiple component processes

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

CHAPTER 6 CONCLUSION AND FUTURE SCOPE

USING OF FRACTIONAL FACTORIAL DESIGN (r k-p ) IN DATA ENVELOPMENT ANALYSIS TO SELECTION OF OUTPUTS AND INPUTS

Transcription:

Bulletin of Mathematics Vol. 05, No. 01 (2013), pp. 27 42. AN IMPROVED APPROACH FOR MEASUREMENT EFFICIENCY OF DEA AND ITS STABILITY USING LOCAL VARIATIONS Isnaini Halimah Rambe, M. Romi Syahputra, Herman Mawengkang Abstract. This paper developed an improved sensitivity analysis approach in the efficient Decision-Making Units (DMUs) when the data uncertainty occured locally. This analysis consider the stability of an efficient DMU by deteriorating a class of DMUs simultaneously in the same directions to keep the test DMU remains on the efficient frontier. The new approach generalizes the usual DEA sensitivity analysis in which the data variations are considered either on the single test DMU or on the all over DMUs. This enables the decision maker to take suitable actions that meet the possible local variations. 1. INTRODUCTION The development of the industrial sector in line with the development of methods in decision making. It also changed the viewpoint of industry players. The industry began to consider how the industry runs as efficiently as possible. Efficiency is one of the performance parameters that describe the overall performance of an organization. The ability to produce maximum output with existing input is a measure of the expected performance. At Received 12-12-2012, Accepted 15-01-2013. 2000 Mathematics Subject Classification: 15A23, 15A48 Key words and Phrases: DEA, Efficiency, Sensitivity analysis, Local variations. 27

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 28 the time of measurement efficiency, an organization faced with the reality of how to get the optimum output with existing input. Due to the condition of efficient 100% is very difficult to achieve, it must be measured relative efficiency. This means that the efficiency of an object does not compare to ideal conditions (100 %), but compared with the efficiency of other objects. One of the methods that can be used to measure the relative efficiency is Data Envelopment Analysis (DEA) introduced by Charnes [2]. DEA is a non-parametric method based on linear programming and using data-oriented approach. The main objective of DEA is to obtain a best DMU among the existing DMUs. DEA classify DMUs into two classes, namely efficient and inefficient. Basically DEA working principle is to compare the data inputs and outputs of DMUs with an input and output data of the other DMUs. The application of DEA models have been used in various disciplines of science and operational activities as shown by Cooper [5]. Researchers in various fields realized that DEA is a very good method and easy to use for operational processes in evaluating the performance of DMUs, Charnes [3]. The efficiency of DMUs introduced by Charnes [2] known as CCR DEA model. The eficiency can be achieved by solving the following problem: s r=1 max h 0 = u ry ro m i=1 v (1) ix io s r=1 s.t. u ry rj m i=1 v ix ij 1, j = 1,..., n u r, v j r, r = 1,..., s; i = 1,..., m u r and v i are the weights of output and input. The zero subscript expressed the evaluated DMU, where x ij > 0 is the observed input, for i = 1, 2,..., m and j = 1, 2,..., n. Similarly, y rj > 0 is the observed output for i = 1, 2,..., m and j = 1, 2,..., n. One of the existing problems in the DEA is the existing of the uncertainty factor that may affect the efficiency of DMU. The variations of the data may occur at the efficient and inefficient DMUs. This will affect the measurement of efficiency in DEA. So we need some further evaluation to assess the stability of the efficiency of DMUs. Charnes [4] introduced a sensitivity analysis that examine the influence of single output variation on CCR model. tas diaplikasikan pada model DEA CCR. The main purpose of the sensitivity analysis is to obtain information about the range of the allowed variation in the data that does not change

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 29 the value of the efficiency of the DMUs. Zhu [12] use the super-efficiency model to determine the necessary and sufficient conditions for preserving efficiency of the efficient DMUs under the CCR model. Thompson et al. [11] utilize Strong Complementary Slackness Condition (SCSC) multipliers to analyze the stability of CCR efficiency when the data for all efficient DMUs were worsened and data for all inefficient DMUs were improved simultaneously. Seiford and Zhu [8, 9] discussed the stability of the eficient DMU using super-efficiency model based on a worst-case scenario in which the efficiency of the test DMU was deteriorating while the efficiencies of all other DMUs were improving. In the real-world problems, uncertain conditions could occur not only in single DMU or in all of DMUs but also in a particular local or regional subset of DMUs. It means that the possible data errors may occur in a subset due to the situations of local uncertainty. In this paper, we are interested to discussed about a new aproach of the measurement of sensitivity and stability of a specific efficient DMU o while the data of a particular subset of DMUs, including DMU o, is deteriorated simultaneously in the same value. Since either an increase of any output or a decrease of any input cannot worsen an efficient DMU, we consider the data was changed by giving upward variations in inputs or giving downward variations in outputs in a subset of DMUs. 2.1 Frontier Analysis 2. LITERATURE REVIEW The frontier line is a line connected by outermost points of an analysis graphic that shows the the efficient conditions that can be achieved. The curve that shown by the line is called the Efficient Frontier. The efficient frontier first proposed by Markowitz [7]. Khalid and Battall [6] described the frontier curve through the following example. Suppose that there are five DMUs (A, B, C, D, E) each of them used two inputs X 1 and X 2 to produce Y of outputs. The data of inputs and outputs related to these units determined the levels of their efficiencies as shown in figure 1. The DMUs A, C, and D form a frontier curve, consequently they are efficient, while B and E are inefficient because they do not lie on the efficient curve.

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 30 Y/X 2 A C frontier curve B E D Y/X1 Figure 1: Frontier curve 2.2 Modified DEA Model Let P and U denote the sets of indices of all the DMUs in which its data are perturbed and unperturbed respectively. Also I and O denote the sets of indices of changed inputs and changed outputs respectively. In this research, data of all DMU j in P varied according to the following expressions: {ˆxij = x ij +, 0, ˆx ij = x ij, i I i / I (2) and {ŷrj = y rj δ, y rj δ 0, r O ŷ rj = y rj, r / O (3) We use the modified DEA models to study the stability of efficient DMUs when data of a given subset (including the tested efficient DMU) of DMUs are changed simultaneously in the same direction and the data of other DMUs are hold fixed. By means of extended versions of the superefficiency model, we propose an improved approach non-linear programming models whose optimal values yield particular stability regions for the tested DMU. The sufficient and necessary conditions for preserving the test DMU remains on the frontier with respect to the data changed type.

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 31 3. PROBLEM FORMULATION 3.3 Sensitivity Analysis Model Assume DMU o is efficient and the data changes as shown in equation (2), then the inequality (4)-(7) is an additive model that has been modified to measure the stability of DMU o of the data changes. t+1 = Min t = 0, 1, 2, (4) subject to λ j x ij + λ j (x ij + t ) x io +, i I (5) λ j x ij x io, i / I (6) λ j y rj y ro, r = 1, 2,, s (7) λ j = 1 0; λ j 0, j o The optimal value of t+1 is maximum increment in input of DMU o while the data has been enhanced with the unit as shown in equation (2). This process is initialized by taking the value of o = 0 and then iteratively do the calculation process to obtain the optimum value. Before performing an iterative process, there are several things that must be considered as follows: 1. For the first step, model (4) set 0 = 0 to measure the radius of stability if the data changes occurs on the DMU o only while the other DMUs are hold fixed. Based on the results in Charnes et al. [2], we have 1 > 0 if DMU o is extreme efficient. 2. Supposed that t t 1 in step t. For step t + 1, consider model in eq. (4) by setting all variables with the optimal solution, inequality (5) becomes as follows: λ j x ij + λ j (x ij + t ) x io + t+1, i I. It follows that, λ j x ij + λ j (x ij + t 1) x io + t+1 λ j ( t t 1), i I.

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 32 So, t + 1 λ j ( t t 1) is feasible for the model (4) at step t. Hence t t + 1 λ j ( t t 1) t + 1. This indicates that the sequence of optimal values, { t = 1, 2, }, is non-decreasing in t. The sequence is convergent if it is bound above, or otherwise it tends to infinity and DMU o is stable always. As the above results suggest, model (4) is extended as following non-linear programming: Subject to = Min λ j x ij + λ j (x ij + ) x io +, i I; j D,j / o j D,j / o j D,j / o j P,j 0 λ j x ij x io, i / I; λ j y rj y ro, r = 1, 2,, s; (8) λ j = 1; ; λ j 0, j / o. For a given efficient DMU o, assume that the model is feasible in this research. 3.4 Stability Region In this study, the determination of the stability region is a very important issue. The properties of input stability of DMU o are shown by Theorem 3.1. Theorem 3.1 Given data varied in the inputs as (2), an efficient DMU o remains on the efficient frontier if and only if [0, ], where is the optimal value to model (8). Proof. First consider the following DEA model to evaluate DMU o with DMU j change their inputs by the value x ij + for all j P.

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 33 θ = Min θ (9) subject to λ j x ij + λ j (x ij + ) + λ o (x io + ) θ(x io + ), i I (10) λ j x ij + λ o x io θx io, i / I (11) λ j y rj + λ o y ro y ro, r = 1, 2,, s λ j + λ o = 1 λ j 0; λ o 0; θ 0. Let the optimal solution to model (9) be (λ j,λ o,θ ). Assume that DMU o is located in the frontier, then θ < 1 and λ = 0. By setting all variables with the optimal solution to model (9), inequalities (10) and (11) have the following result: λ j x ij + λ j x ij + λ j (x ij + ) λ j (x ij + θ ) θ (x io + ) x io + θ +, i I and λ j (x ij θ x io x io, i I It means that (λ j, ) = (λ j, θ ) is a feasible solution to model (8). Thus, θ, for example θ 1. It leads to a contradiction. So, DMU o remains on the efficient frontier if =. Conversely, assume that DMU o remains on the efficient frontier if inputs are increased as (2) with units, and >.

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 34 So, Model (8) is rewritten as follows: ρ = Min ρ (12) subject to λ j x ij + λ j ((x ij + ) + ρ) (x io + ) + ρ, i I (13) λ j x ij x io, i / I; (14) j D,j 0 j D,j 0 j D,j 0 λ j y rj y ro, r = 1, 2,, s; λ j = 1 λ j 0; j o; ρ : free in sign. Since DMU o is located on the frontier, then ρ 0. It implies that ρ + >. But, according to model (8), its optimal value must be. Hence, ρ + =. This also leads to a contradiction. So, DMU o remains efficient only if. Theorem 3.1 illustrates that the minimization of model (8) provides the posible maximum increment of inputs as (2) to all DMUs in P for keeping DMU o on the efficient frontier while the other inputs are held at constant. Now, consider the case of changing data in outputs. Assume that DMUs is efficient and data are changed in the outputs as (3). Use the following DEA model in which the test DMU o is not included in the reference set to find the stability regions of outputs. δ = Min δ (15) subject to λ j y rj + λ j (y rj δ) (y ro δ), r O λ j y rj y ro, r / O; λ j x ij x io, i = 1, 2,, m; λ j = 1 δ 0; λ j 0; j o. First show that model (15) is translation invariant. Lemma 3.1 Model (15) is translation invariant.

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 35 Proof. Since λ j = 1, then the result follows. Theorem 3.2 Given data varied as (3), the efficient DMU o remains on the efficients frontier if and only if δ [0, δ ], where δ is the optimal value to model (15). Proof. First show that DMU o remains on the frontier if δ = δ. By Lemma refinv, data of outputs may adjust so that y ro > 2δ and it follows that δ /(y ko δ ) < 1, r O. Then, consider the following DEA model when DMU o is under evaluation and DMU j change their outputs by value y rj δ j P. φ = Max φ (16) subject to λ j y rj + λ j (y rj δ ) + λ 0 (y ro δ ) φ(y ro δ ), r O (17) λ j y rj + λ o y ro φy ro, r / O; (18) λ j x ij + λ o x io x io, i = 1, 2,, m; λ j + λ o = 1 λ j 0; λ o 0; φ 0. Let the optimal solution to model (16) be (λ j, λ o, φ ). Assume DMU o is located inside the frontier, that is φ > 1 and λ o = 0. It follows that: φ > δ /(y ro δ ) and φ y ro δ φ δ > 0, r O. By setting all variables with the optimal solution to model (16), inequalities (17) and (18) could yield the following result: λ j y rj + λ j y rj + λ j (y rj δ ) λ j (y rj δ /φ ) φ (y ro δ ) = y ro δ /φ + (φ y ro δ φ δ ) (1 1/φ ) y ro δ /φ, r O, and λ j (y rj φ y ro y ro, r / O.

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 36 It means that (λ j, δ) = (λ j, δ /φ ) is a feasible solution to model (15). Hence δ /φ δ, φ 1. It leads to a contradiction. So, DMU o remains on the efficient frontier if δ = δ. Conversely, assume that DMU o remains on the efficient frontier if outputs are decreased as (3) with δ units, and δ > δ. So model (15) is written as follows: τ = Min τ (19) subject to λ j y rj + λ j ((y rj δ) τ) (y ro δ) τ, r O λ j y rj y ro, r / O; λ j = 1 λ j x ij x io, i = 1, 2,..., m; λ j 0;, j o; τ : free in sign Since DMU o is located on the frontier, then τ 0. It implies that τ + δ δ > δ. But according to model (15), it must be τ + δ = δ. This also leads to a contradiction. So, DMU 0 remains efficient only if ρ ρ. Theorem 3.2 illustrate that minimization of model (15) provides the possible maximum decrement for each individual output to keep DMU o to remain on the efficient frontier while the other outputs are held at constant. tetap pada frontier efisien ketika output lainnya tetap. Moreover, if the inputs and outputs are changed in the same time, the stability region is

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 37 obtained by solving model (20). Γ = Min Γ (20) subject to λ j x ij + λ j (x ij + Γ) (x io + Γ), i I λ j y rj + λ j x ij x io, i / I; λ j y rj y ro, r / O λ j = 1 Γ 0; λ j 0; j / o. λ j (y rj Γ) (y ro Γ), r O Theorem 3.3 The efficient DMU o remains on the frontier after the data change as (2) and (3) with = δ = Γ, if and only if Γ [0, Γ ], where Γ is the optimal value to model (20). Proof. The proof is analogous to the proof of Theorem 3.1 and 3.2, and it is omitted. So, it derived the sufficient and necessary condition for the models to preserve the effciency of an efficient DMU under the given data change type. 4. NUMERICAL EXAMPLE in this paper, we apply the DEA sensitivity technique to evaluate the stability of 16 Emergency Departmens medical centers in Taiwan in 2001 [10]. Each medical center uses three inputs to produce two outputs. The inputoutput set is as follows: Input: (i) Bed (BEDs): the number of licensed sick beds in the medical centers. (ii) Doctor (DRs): the number of doctors in Emergency Department. (iii) Nurse (N Rs): the number of registered and licensed practical nurses in Emergency Department.

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 38 Output: (i) Emergency Room visits (ER): the number of emergency room visits per month. (ii) DP score: the accredited score of quality of Disaster Preparedness planning in 2001. These hospitals are located in four different regions, northern, central, southern and eastern areas in Taiwan. There are six public and ten private hospitals. Table 1 shows the data of input-output, the location and the ownership of the hospital. Table 1: Data set of Taiwan Medical Centers Hospital Region Ownership BEDs DRs NRs ER DP 1 North Public 1670 20 40 6000 73.6 2 North Public 2886 41 74 7000 73.2 3 North Public 2468 20 35 7000 61.4 4 Central Public 1371 12 26 4500 64.8 5 South Public 1007 16 47 4500 71.2 6 South Public 1263 22 60 6000 56.6 7 North Private 1190 40 80 12000 58.4 8 North Private 3864 50 109 13800 68.8 9 North Private 799 15 25 4500 46.0 10 Central Private 1603 30 43 13000 61.2 11 Central Private 1604 45 141 11000 63.0 12 Central Private 819 16 40 4250 64.8 13 South Private 1358 27 46 6750 60.6 14 South Private 2415 35 60 10000 62.4 15 South Private 1179 22 40 6000 55.4 16 East Private 811 8 20 4000 63.8 By using LINDO, we get the efficiency of each DMUs of the hospitals as table 2.

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 39 Table 2: The Efficiency of Taiwan hospitals Hospital (DMU) Region Ownership θ Efficiency 1 North Public 0.666832 N 2 North Public 0.399478 N 3 North Public 0.783883 N 4 Central Public 0.825002 N 5 South Public 0.895565 N 6 South Public 0.699421 N 7 North Private 1 E 8 North Private 0.591648 N 9 North Private 881533 N 10 Central Private 1 E 11 Central Private 0.757355 N 12 Central Private 1 E 13 South Private 0.725477 N 14 South Private 0.633663 N 15 South Private 0.751026 N 16 East Private 1 E *E=efficient; N=Non-efficient Table 2 shows that there are 4 efficient hospitals, all of them are private. The administrator of hospital 7 (H7) focused on the stability to preserve it self remains efficient under the following possible data perturbations: (i) data deterioration occurs on itself only, P={7}. (ii) data deterioration occurs on all private hospitals in northern Taiwan, P={7, 8, 9}. (iii) data deterioration occurs on hospitals of H7 H10, P={7, 8, 9, 10}. (iv) data deterioration occurs on all private hospitals in northern and central area, P={7, 8, 9, 10, 11, 12}.

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 40 Table 3 represented the stability of H7 based on the different deterioration above. To preserve the efficiency of H7, it could decrease 3491 Emergency Room (ER) visit it self at mostly. It is also followed increase 318 unit the number of beds. But, if the private medical centers in northern area were requested to promote the health care quality by reducing their ER visits, the largest number of deterioration in H7 H9 to preserve efficiency of H7 is 3609. Further, H7 remains efficient if all of the private medical centers in northern and central area (H7 H12) decrease 6018 ER visits simultaneously. Table 3: Stability Region of H7 Perturbations BEDs DRs NRs ER DP score P={7} 318.4 SA SA 3491.7 SA P={7, 8, 9} 323.4 SA SA 3609.4 SA P={7, 8, 9, 10} 959.5 SA SA 4633.7 SA P={7, 8, 9, 10, 11, 12} 2051.0 SA SA 6018.2 SA SA = Stable Always 5. CONCLUSION The paper proposed a new DEA sensitivity approach referring to the nonlinear models that may be considered as the extension of superefficiency models which proposed by Andersen and Petersen [1]. This technique provides the stability of efficient DMUs by giving the data variations on a subset of perturbing DMUs. Based on some results of DEA sensitivity analysis, some conclusions can be drawn as follows: 1. Theorem 3.3 derived the sufficient and necessary condition for model (20) to preserve the efficiency of an efficient DMU under the given data change type as (2) and (3). 2. Sufficient and necessary conditions are provided for upward variations of inputs and/or downward variations of outputs on a subset of DMUs simultaneously so that an efficient DMU remains on the efficient frontier.

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 41 3. Some efficient DMU o will always efficient (stable) if and only if Γ [0, Γ ], where Γ is the optimal value for model (8). 4. If the inputs and outputs are changed in the same time, the stability region is obtained by solving model (20). References [1] Andersen, P. and Petersen, N.C. (1993). A Produce for Ranking efficient Units in Data Envelopment Analysis. Management Science, Vol. 39, pp. 1261-1264. [2] Charnes, A., Cooper, W.W., and Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, Vol. 2, pp. 429-444. [3] Charnes, A., Cooper, W.W. and Thrall, R.M. (1991). A Structure for Classify and Characterizing Efficiency and Inefficiency in Data Envelopment Analysis. Journal of Productivity Analysis, Vol. 2, pp. 197-237. [4] Charnes, A, Cooper, W.W. and Rousseau, J. (1985). Sensitivity and Stability analysis in DEA, Annuals of operations Research,2, pp. 139-156. [5] Cooper, W.W., Seiford, L.M. and Tone, K. (2000). Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software. Kluwer Academic Publishers, Boston. [6] Khalid, S. and Battall, A.H. (2006). Using data envelopment analysis to measure cost efficiency with an application on islamic banks. Scientific Journal of Administrative Development, Vol. 4, pp. 134-155. [7] Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, Vol. 7, No. 1, pp. 77-91. [8] Seiford, L.M. and Zhu, J. (1998). Stability Region for Maintaining Efficiency in Data Envelopment Analysis. Eurpean Journal of the Operational Research, Vol. 108, pp. 127-139. [9] Seiford, L.M. and Zhu, J. (1998). Sensitivity analysis of DEA models for simultaneous changes in all the data. Journal of the Operational Research Society, Vol. 49, pp. 1060-1071.

Isnaini Halimah Rambe et. al. An Improved Approach for Measurement Efficiency of DEA 42 [10] Teng, Y.H. (2003). The study of Taiwan hospitals disaster preparedness for temporary shelters with specific measurement chart. Ph.D. Thesis, Norman J. Arnold School of Public Health University of South Carolina. [11] Thompson, R. G., Dharmapala, P. S. and Thrall, R. M. (1994). DEA sensitivity analysis of efficiency measures with applications to Kansas farming and Illinois coal mining, in Data Envelopment Analysis: Theory, Methodology and Applications, A. Charnes, W. W. Cooper, A. Y. Lewin and L. M. Seiford (eds.), Kluwer Academic Publishers, pp. 393422, Boston MA. [12] Zhu, J. (1996). Robustness of the efficient DMUs in data envelopment analysis. European Journal of Operational Research, Vol. 90, pp. 451-460. Isnaini Halimah Rambe: Graduate School of Mathematics, Faculty of Mathematics and Natural Sciences, University of Sumatera Utara, Medan 20155, Indonesia. E-mail: isnainirambey89@gmail.com M. Romi S: Graduate School of Mathematics, Faculty of Mathematics and Natural Sciences, University of Sumatera Utara, Medan 20155, Indonesia. E-mail: moehromi89@gmail.com Herman Mawengkang: Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Sumatera Utara, Medan 20155, Indonesia. E-mail: mawengkang@usu.ac.id