Are absorption and spontaneous or stimulated emission inverse processes? The answer is subtle!

Similar documents
MODERN OPTICS. P47 Optics: Unit 9

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 15. Optical Sources-LASER

MOLECULAR SPECTROSCOPY

Supplementary Figure 1: Determination of the ratio between laser photons and photons from an ensemble of SiV - centres under Resonance Fluorescence.

Atomic Structure and Processes

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules

Physics 221 Lecture 31 Line Radiation from Atoms and Molecules March 31, 1999

5.111 Lecture Summary #3 Monday, September 8, 2014

Scholars Research Library. Understanding the decay of atom in quantum theory of radiation using the concept of area

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002

Einstein s Approach to Planck s Law

Relativistic corrections of energy terms

OpenStax-CNX module: m The Bohr Model. OpenStax College. Abstract

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7

Quantum Mechanics. Particle in a box All were partial answers, leading Schrödinger to wave mechanics

Semiconductor Physics and Devices

Elements of Quantum Optics

Introduction to Modern Quantum Optics

Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics

Optical Properties of Lattice Vibrations

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

The Einstein A and B Coefficients

Spontaneous Emission, Stimulated Emission, and Absorption

In Situ Imaging of Cold Atomic Gases

Light Interaction with Small Structures

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Lecture 0. NC State University

QM all started with - - The Spectrum of Blackbody Radiation

Lecture notes for QFT I (662)

Properties of Light and Atomic Structure. Chapter 7. So Where are the Electrons? Electronic Structure of Atoms. The Wave Nature of Light!

Recall: The Importance of Light

Lecture 21 Reminder/Introduction to Wave Optics

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation

Photons: Explained and Derived by Energy Wave Equations

The Bohr Model of the Atom

QUANTUM THEORY OF LIGHT EECS 638/PHYS 542/AP609 FINAL EXAMINATION

8 Quantized Interaction of Light and Matter

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous?

ATMO/OPTI 656b Spring 2009

January 2010, Maynooth. Photons. Myungshik Kim.

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives

UNIT 7 ATOMIC AND NUCLEAR PHYSICS

Correlated Emission Laser, Quenching Of Spontaneous Noise and Coupled Pendulum Analogy

298 Chapter 6 Electronic Structure and Periodic Properties of Elements

Light Quantum Hypothesis

van Quantum tot Molecuul

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.5: Optical Absorption. Ron Reifenberger Professor of Physics Purdue University

COMPTON EFFECT IS A RAMAN WAVE EFFECT

Principles of Lasers. Cheng Wang. Phone: Office: SEM 318

Lecture 11 Atomic Structure

General Considerations 1

The term "black body" was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation.

Quantum Mechanics: Discretization of Energy and Wave-Particle Duality

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

Physics Oct A Quantum Harmonic Oscillator

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Electrons in Atoms. Before You Read. Chapter 4. Review the structure of the atom by completing the following table.

CHAPTER 9 ELECTROMAGNETIC WAVES

CHEM Atomic and Molecular Spectroscopy

UNIT : QUANTUM THEORY AND THE ATOM

Laser Physics 168 Chapter 1 Introductory concepts. Nayer Eradat SJSU Spring 2012

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES

Electromagnetic Field Waves

ATOMIC AND LASER SPECTROSCOPY

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Chapter 7. The Quantum Mechanical Model of the Atom

5.111 Lecture Summary #4 Wednesday, September 10, 2014

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS

FI 3103 Quantum Physics

Quantization of Energy *

Electromagnetic Field Waves

φ(ν)dν = 1. (1) We can define an average intensity over this profile, J =

Chapter 1. From Classical to Quantum Mechanics

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chapter. 3 Wave & Particles I

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

Einstein s Theory Relativistic 0 < v < c. No Absolute Time. Quantization, Zero point energy position & momentum obey Heisenberg uncertainity rule

Lecture 8. > Blackbody Radiation. > Photoelectric Effect

Learning Objectives and Worksheet I. Chemistry 1B-AL Fall 2016

Announcements. Fast => v~c c= the velocity of light

Theory of optically thin emission line spectroscopy

EE 223 Applied Quantum Mechanics 2 Winter 2016

Code: ECTS Credits: 6. Degree Type Year Semester

Origin of Matter and Time

84 My God, He Plays Dice! Chapter 12. Irreversibility. This chapter on the web informationphilosopher.com/problems/reversibility

OPTI 511R: OPTICAL PHYSICS & LASERS

Chapter 7. Quantum Theory and Atomic Structure

Electronic Structure of Atoms. Chapter 6

A system of two lenses is achromatic when the separation between them is

Chapter 5 Electrons In Atoms

APPLIED OPTICS. Lecture-1: EVOLUTION of our UNDERSTANDING of LIGHT. Is it a stream of particles?

QUANTUM MECHANICS Chapter 12

Photochemical principles

Spontaneous Emission and the Vacuum State of EM Radiation. Miriam Klopotek 10 December 2007

3. Particle-like properties of E&M radiation

ATOMIC STRUCTURE. Kotz Ch 7 & Ch 22 (sect 4,5)

Chapter 9: Quantization of Light

Transcription:

Applied Physics B (9) 5:5 https://doi.org/7/s34-9-733-z Are absorption and spontaneous or stimulated emission inverse processes? The answer is subtle! Markus Pollnau Received: October 8 / Accepted: 4 January 9 / Published online: January 9 The Author(s) 9 Abstract It is generally believed that absorption and stimulated emission are inverse processes, as both are driven by an external field, their strength is quantified by the same Einstein B coefficient, and they occur with a defined phase, opposite to each other, namely in phase and in anti-phase with the driving field, whereas spontaneous emission is a different process that occurs with an arbitrary phase with respect to a potential incident field. Recently, the phase relation in absorption and emission was shown to differ from this believe. Here it is verified via the amplitude phase diagram and via the interference of sine waves that, precisely speaking, only the absorption process, in which a number φ + of incident photons is decreased by one photon, and the emission process, in which a number φ of incident photons is increased by one photon, are truly inverse processes also in their phase. Particularly, this implies that absorption of a single incident photon and spontaneous emission of a photon into an empty mode are inverse processes in the amplitude phase diagram. Introduction In 995, Nobel laureate Willis E. Lamb published a paper entitled Anti-photon in Applied Physics B [], in which he expressed his dissatisfaction with how little a grip his scientific environment mastered upon the field of photonics. Particularly, he condemned the association of an electromagnetic wave with a particle the photon. Besides many other examples, in one he reprimanded another Nobel laureate, Albert Einstein, for a fundamental conceptual mistake in his seminal paper from 97 [], when introducing a new (set within quotation marks by Lamb []) process of stimulated emission of radiation, quantified by the Einstein B coefficient. Lamb criticized Einstein for not having realized that, whereas the Einstein A coefficient of spontaneous emission cannot be a result of classical electromagnetic theory, the classical Maxwell electrodynamics already made provision for both of the Einstein B coefficients of absorption and stimulated emission []. Lamb then becomes explicit: It would have made for much better physics if Einstein had recognized this fact, and had used his theory to calculate * Markus Pollnau m.pollnau@surrey.ac.uk the value of the A coefficient for spontaneous emission in 97, instead of leaving it to Dirac in 97 to get the A coefficient from the quantum theory of radiation []. Here Lamb referred to Ref. [3], albeit without citing it. Despite Lamb s dissatisfaction, I will use here the word photon, however, only in the sense of the quantized energy unit of light. In a nd semester university course on classical electrodynamics, we are typically instructed in the following way (Fig. ): a. Spontaneous emission is a process, in which an atom in its excited state emits an electromagnetic field, comprising the energy of one photon, with an arbitrary phase with respect to a potentially existing incident field (but the students would learn later that spontaneous emission is actually driven by so-called vacuum fluctuations [4]). b. Stimulated emission (absorption) is a process, in which an incident electromagnetic field, comprising the energy of one photon, forces an atom in its excited (ground) state to oscillate and emit a second electromagnetic field, comprising the energy of one photon, that is in phase (anti-phase) with the incident field, such that these two fields interfere constructively (destructively) with each other and the energy is emitted (absorbed) by the atom. Department of Electrical and Electronic Engineering, Advanced Technology Institute, University of Surrey, Guildford GU 7XH, UK To Lamb and, for once, also to most of his scientific environment it was crystal clear that absorption and Vol.:(3456789) 3

5 Page of 5 M. Pollnau Fig. The processes of a absorption, b stimulated emission, and c spontaneous emission by a two-level atom with level energies E and E and an upper-state luminescence lifetime of τ, as typically depicted in an optics text book stimulated emission are the two truly inverse processes. This seemed obvious, as () both processes are driven by a real incident electromagnetic field, () their strength is quantified by the same Einstein B coefficient, and (3) these two processes occur with a defined, opposite phase. In this paper, I will defend the position that the situation is, indeed, a bit more subtle and that Einstein intuitively had a point. Absorption and emission in the amplitude phase diagram Recently, phasized [5] that, in stark contrast to the above-mentioned instructions, all quantitative semi-classical models suggest that, generally, emission of a photon at the resonance frequency of an atomic transition must occur with a phase that is 9 in lead of an incident field, whereas absorption must occur with a phase that lags 9 behind the resulting field. Only in this way energy is conserved. We understand this fact when dividing the emission or absorption process into its two parts, namely an oscillation of the electron cloud around the atomic core and the emission of an electromagnetic wave by this oscillating electron cloud. The Lorentz oscillator model, resulting in the complex susceptibility, or, equivalently, the mathematical Kramers Kronig relations imply that the electron oscillation occurs at the mentioned phase difference of 9. Whereas the near-field radiation of an oscillating electric dipole is rather complex [6, 7], with the phases of longitudinal and transverse components of the electric field changing with increasing distance from the dipole, the far-field radiation emitted by an atomic dipole is dominated by the transverse component and is in phase with the atomic dipole oscillation [6 8]. Therefore, the total phase difference is 9. Figure shows an amplitude phase diagram. The coordinate axes are in units of the electric-field amplitude, calibrated to the square root of the number of photons at the frequency ν that is resonant with the atomic transition. Consequently, the quarter circles denote the amplitudes of electric fields comprising (red), (orange), 3 (yellow), etc. photon energies hν. The x- and y-axes display the real and imaginary parts of the amplitude, respectively. The coordinate system rotates with e iπνt. All red vectors denote Im( / ).8.6.4.. (-abs) (-em) (-em)...4.6.8 Re( / ) (-abs) Fig. Quadrant of the amplitude phase diagram. Incident and resulting fields, as well as absorption and emission processes are represented by electric-field vectors. Labels: a maximum of () or () photons is involved in an absorption (abs) or emission (em) process electric fields comprising one photon, whereas the orange vector denotes an electric field comprising two photons. The angle between the two sets of red vectors is 9. Four processes can be identified, including a maximum of either one () or two () photons and describing an absorption (abs) or emission (em) process. The four processes are (-abs) absorption of the electric field of a single incident photon, (-em) spontaneous emission of the electric field of a photon into an empty mode, (-abs) absorption of the electric field of one out of two incident photons, and (-em) stimulated emission of the electric field of a photon driven by a single incident photon. In each case, the initial electric field, the absorbed or emitted electric field (labelled), and the resulting electric field are shown. All four processes obey the law of energy conservation. The figure suggests that the processes (-abs) and (-em) are inverse and the processes (-abs) and (-em) are inverse. 3

Are absorption and spontaneous or stimulated emission inverse processes? The answer is subtle! Page 3 of 5 5 These four processes are displayed individually on the left-hand side of Fig. 3. In (-abs), the rightward-pointing red vector is the incident field, the leftward-pointing red vector is the emitted field, and the resulting field is a vector of length zero at the origin. In (-em), the incident field is a vector of length zero at the origin, whereas the red vector simultaneously indicates the emitted field and the resulting field. In (-abs), the orange vector is the incident field, the downward-pointing red vector is the emitted field, and the rightward-pointing red vector is the resulting field. In (-em), the rightward-pointing red vector is the incident field, the upward-pointing red vector is the emitted field, and the orange vector is the resulting field. The four processes are quantified on the right-hand side as a sum of sine waves by taking into account the different phase angles emerging from the left-hand side; see also [5]. An additional phase angle of 8 degrees has been introduced in the amplitude phase diagrams to move the arrows away from the x-axis for improved visibility. This angle is not considered in the sine-wave diagrams on the right-hand side of Fig. 3. The incident field (blue dashed line) induces the emitted field (green dashed line), thereby generating the resulting field (red dashed line). The corresponding intensities, calibrated as number of photons, are shown as solid lines. In all four examples, the energy is conserved, because the expected number of photons results. 3 Inverse processes The answer to the question raised in the title is subtle. The truly inverse processes are those, in which (abs) an absorbing atom removes one photon from an incident field containing φ + photons, such that the resulting field contains φ photons, and (em) an emitting atom adds one photon to an incident field containing a number φ of photons, such that the resulting field contains φ + photons. Both processes comprise the same number of photons and are described by the same vector triangle, with the same phase angles, in the amplitude phase diagram (Fig. ). The reader can easily extend the diagram in Fig. to larger numbers of involved photons; see also [5]. This identification of inverse processes is resembled by the results of the Jaynes Cummings model [9]. In the four cases displayed in Fig. 3, the relative phase angle of emitted field with respect to incident (or resulting) field is, from top to bottom, π (arbitrary), arbitrary (),.75π (.5π), and.5π (5π), respectively. The common pattern of the two corresponding processes with the same number of photons involved is the following. The relative phase of emitted with respect to resulting field in the absorption process lags by a phase difference of π behind the relative phase of emitted with respect to incident field in the emission process, namely π vs., arbitrary vs. arbitrary,.75π vs. 5π, and.5π vs..5π, respectively. This leads us to the simple conclusion that the inverse process of (-abs) absorption of a single incident photon is (-em) spontaneous emission into an empty mode, whereas the inverse process of (-abs) absorption of one photon out of an incident field containing two photons is (-em) stimulated emission of a second photon induced by a single incident photon. It then also becomes clear that the two processes of (-abs) absorption and (-em) stimulated emission induced by one incident photon are not inverse processes. They are neither in phase and anti-phase with the driving field, respectively, nor are they even in opposite phase with each other. In (-abs) absorption of a single incident photon, the induced atomic oscillation (and the quasi-emitted photon) is in anti-phase with the incident field, thereby extinguishing the incident field. In (-em) stimulated emission induced by a single photon, the phase of atomic oscillation and emitted photon is 9 in lead of the incident field (Fig. ). It is not unlikely that Einstein approached the investigation that led him to the discovery of stimulated emission [] in the following way. The two-level atoms he considered for the description of blackbody radiation [] can each only absorb one photon, which they would most likely re-emit by spontaneous emission. Therefore, it is natural to assume one incident photon when describing the process of absorption and no incident photon when describing the process of spontaneous emission, in their simplest form. It is then only consequent to also consider stimulated emission by an excited atom for the simplest case of one incident photon. When comparing these three simplest possible processes, Einstein rightfully identified absorption and spontaneous emission as inverse processes because of their symmetry: one photon either disappears or appears. In contrast, the process of stimulated emission involves two photons. Einstein interpreted stimulated emission as a new phenomenon, because it was hitherto unknown and because it does not have a symmetry with the two other processes. Einstein certainly had a point! Unfortunately, although Maxwell s electromagnetic theory was known, Einstein did not investigate the phase aspect of these processes, which would have revealed the full picture. 4 Conclusion On the one hand, the two processes of absorption and stimulated emission of the electromagnetic field of one photon by an atom driven by the electromagnetic field of a single incident photon are connected by the facts that they are both () driven by an external electromagnetic field and () quantified by the same Einstein B coefficient. However, these two processes are unrelated in terms of the number of 3

5 Page 4 of 5 M. Pollnau.8.6 Im( / ) Im( / ) Im( / ) Im( / ).4.. -.8...4.6.8 -.6.4.. -.8...4.6.8 -.6.4.. -.8...4.6.8 -.6.4.. -...4.6.8 - Re( / ) Electrical field E ( / ) Electrical field E ( / ) Electrical field E ( / ) Electrical field E ( / ) - -.5..5. - -.5..5. - -.5..5. - (-abs) (-em) (-abs) (-em) -.5..5. Rela ve phase / photons involved and do not exhibit opposite phase difference between driving and driven field. On the other hand, the two processes of absorption of a single incident photon by an atom and spontaneous emission of one photon from an atom into an empty mode are connected by the facts that (3) they are inverse processes in the amplitude phase diagram, 3

Are absorption and spontaneous or stimulated emission inverse processes? The answer is subtle! Page 5 of 5 5 Fig. 3 From top to bottom: the four processes of (-abs) absorption of the electric field of a single incident photon, (-em) spontaneous emission of the electric field of a photon into an empty mode, (-abs) absorption of the electric field of one out of two incident photons, and (-em) stimulated emission of the electric field of a photon driven by a single incident photon. Left column: Individual processes in the amplitude phase diagram (equivalent to Fig. ). Right column: electric fields E (dashed lines, with the ordinate calibrated as square root of number of photons) and intensities I (solid lines, with the ordinate calibrated as number of photons) versus relative phase ϕ in units of π. Incident (inc, blue) wave, displayed with absolute phase angle zero, as well as emitted (em, green) and resulting (out, red) waves. For (-abs), blue and green solid lines are identical, and red dashed and solid lines are identical. For (-em), blue dashed and solid lines, green and red dashed lines, and green and red solid lines, respectively, are identical with the same phase angles, and (4) the same number of photons is involved. The truly inverse process of stimulated emission of one photon by an excited atom driven by a single incident photon is the absorption of one out of two incident photons by an atom in its ground state, as both processes () are driven by an external electromagnetic field, () are quantified by the same Einstein B coefficient, (3) are opposite processes in the amplitude phase diagram, with the same phase angles, and (4) involve the same number of photons. Hence, neither Einstein nor Lamb was right or wrong. Funding The author acknowledges funding by the European Research Council via the ERC Advanced Grant Optical Ultra-Sensor, No. 346. Open Access This article is distributed under the terms of the Creative Commons Attribution 4. International License (http://creat iveco mmons.org/licen ses/by/4./), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. References. W.E. Lamb Jr., Appl. Phys. B 6, 77 (995). A. Einstein, Phys. Z. 8, (97) 3. P.A.M. Dirac, Proc. R. Soc. A 4, 43 (97) 4. V. Weisskopf, Naturwiss. 3, 63, 647, 669 (935) 5. M. Pollnau, Optica 5, 465 (8) 6. L. Novotny, Lecture notes on Electromagnetic Fields and Waves (ETH Zurich, Switzerland, 3), vol. 6.3, pp. 8 83 7. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 6), pp. 6 65 8. D.J. Griffiths, Introduction to Electrodynamics, 3rd edn. (Prentice Hall, Upper Saddle River, 999), pp. 444 45 9. E.T. Jaynes, F.W. Cummings, Proc. IEEE 5, 89 (963). M. Planck, Ann. Phys. 39, 553 (9) 3