Double neutron star evolution from geometric constraints

Similar documents
Testing General Relativity with Relativistic Binary Pulsars

General Relativity Tests with Pulsars

General Relativity Tests with Pulsars

Post-Keplerian effects in binary systems

arxiv: v1 [astro-ph.sr] 27 Oct 2015

arxiv:astro-ph/ v1 7 Jul 2004

The Double Pulsar:! A Decade of Discovery! (and what you can do over the next decade with FAST!)

GEODETIC PRECESSION AND TIMING OF THE RELATIVISTIC BINARY PULSARS PSR B AND PSR B Maciej Konacki. Alex Wolszczan. and Ingrid H.

arxiv: v1 [astro-ph.he] 9 Dec 2015

Determination of the geometry of the PSR B system by geodetic precession

Measurements of Neutron Star Masses with a strong emphasis on millisecond binary radio pulsar timing

In Search of New MSPs for Pulsar Timing Arrays. Kevin Stovall, NRAO Socorro NANOGrav Collaboration

Pulsar Overview. Kevin Stovall NRAO

The Formation of the Most Relativistic Pulsar PSR J

Lecture 13: Binary evolution

New Binary and Millisecond Pulsars from Arecibo Drift-Scan Searches

Ultra-stripped Type Ic supernovae generating double neutron stars

Gravity with the SKA

Chapter 18 The Bizarre Stellar Graveyard

The Bizarre Stellar Graveyard

Open problems in compact object dynamics

High Precision Pulsar Timing at Arecibo Observatory

Compact Binaries as Gravitational-Wave Sources

Measurements of binary pulsar masses and a study on the nature of gravitational waves

imin...

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 19.

Chapter 18 The Bizarre Stellar Graveyard. White Dwarfs. What is a white dwarf? Size of a White Dwarf White Dwarfs

The Stellar Graveyard Neutron Stars & White Dwarfs

Neutron Stars. But what happens to the super-dense core? It faces two possible fates:

Chapter 18 Lecture. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

White dwarfs are the remaining cores of dead stars. Electron degeneracy pressure supports them against the crush of gravity. The White Dwarf Limit

Chapter 14: The Bizarre Stellar Graveyard

arxiv:astro-ph/ v2 6 Apr 2004

11/1/16. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard

GEODETIC PRECESSION IN PSR J

Arecibo and the ALFA Pulsar Survey

11/1/17. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy

Optical/IR Counterparts of GW Signals (NS-NS and BH-NS mergers)

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

arxiv:astro-ph/ v1 17 Apr 1999

Alex Gianninas Mukremin Kilic, Warren Brown, & J.J. Hermes December 9 th, th Texas Symposium

arxiv: v1 [astro-ph.im] 3 Oct 2017

Astronomy 421. Lecture 23: End states of stars - Neutron stars

The Same Physics Underlying SGRs, AXPs and Radio Pulsars

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy

arxiv:astro-ph/ v1 15 Aug 2001

Gravity Tests with Radio Pulsars

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

discovers a radio-quiet gamma-ray millisecond Journal Group

Binary Pulsars and Evidence for Gravitational Radiation

Asymmetric explosion of core-collapse supernovae

Timing Noise and The Long-term Stability of Pulsar Profiles

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc.

Testing GR with the Double Pulsar: Recent Results

Evolution of High Mass stars

Astronomy 110: SURVEY OF ASTRONOMY. 11. Dead Stars. 1. White Dwarfs and Supernovae. 2. Neutron Stars & Black Holes

Five and a half roads to from a millisecond pulsar. Thomas Tauris AIfA, University of Bonn Max-Planck-Institut für Radioastronomie, Bonn

The Nature of Pulsars! Agenda for Ast 309N, Nov. 1. To See or Not to See (a Pulsar) The Slowing & Fading of Pulsars!

Stellar-Mass Black Holes and Pulsars

Modeling X-ray and gamma-ray emission in the intrabinary shock of pulsar binaries. Hongjun An Roger Romani on behalf of the Fermi-LAT Collaboration

Probing the Creation of the Heavy Elements in Neutron Star Mergers

NS masses from radio timing: Past, present and future. Paul Demorest (NRAO) Symposium on Neutron Stars, Ohio U., May 2016

The double pulsar as Jupiter: tomography of magnetosphere and a new test of General Relativity. Maxim Lyutikov (Purdue U.)

New Insights from the Optical Study of Spiders

arxiv:astro-ph/ v1 11 Nov 2002

Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae?

EINSTEIN TELESCOPE rd. 3 generation GW detector

A Pulsar Timing Array for Gravitational Wave Detection. Paul Demorest, NRAO

Next Texas Meeting December It s warm in December! In Melbourne. See kangaroos & koalas Swim at Barrier Reef Exciting science

Testing Gravity and Extreme Physics with Pulsars

Relativistic Astrophysics Neutron Stars, Black Holes & Grav. W. ... A brief description of the course

7. BINARY STARS (ZG: 12; CO: 7, 17)

The Physics of Compact Objects Exercises version 2.17

Detection of Gravitational Waves with Pulsar Timing

Probing the Cosmos with light and gravity: multimessenger astronomy in the gravitational wave era

Interactions between gravitational waves and photon astronomy (periodic signals)

Observations radio de pulsars binaires relativistes a Nancay

SPIN PRECESSION IN A 2 BODY SYSTEM: A NEW TEST OF GENERAL RELATIVITY R. F. O CONNELL DEPT. OF PHYSICS & ASTRONOMY LOUISIANA STATE UNIVERSITY

The Theory of Supernovae in Massive Binaries

Correlated spin-down rates and radio emission in PSR B

The Death of Stars. Ra Inta, Texas Tech University

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Probing Relativistic Gravity with the Double Pulsar

Radio timing observations of the pulsar by Kaspi et al. (1994) have

Observations of Radio Pulsars

arxiv:astro-ph/ v1 16 Nov 1999

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

PoS(ISKAF2010)080. The European Pulsar Timing Array. Roy Smits. The EPTA collaboration

Pulsars are Cool. Seriously. Scott Ransom National Radio Astronomy Observatory / University of Virginia

22 Years of a Pulsar-Be Binary System: From Parkes to the Heavens (Fermi) Ryan Shannon Postdoctoral Fellow, CSIRO Astronomy and Space Science

ASTR 200 : Lecture 20. Neutron stars

Binary compact object inspiral: Detection expectations

Stars with Mⵙ go through two Red Giant Stages

Gamma-ray observations of millisecond pulsars with the Fermi LAT. Lucas Guillemot, MPIfR Bonn. NS2012 in Bonn 27/02/12.

Anisotropy in the GW background seen by Pulsar Timing Arrays

Ch. 16 & 17: Stellar Evolution and Death

Supernova Explosions. Novae

Testing physics with millisecond pulsars. Paul Demorest, NRAO

Transcription:

Double neutron star evolution from geometric constraints Robert Ferdman University of East Anglia Bonn NS Workshop X 14 November 2016

A tale of two DNSs PSR J0737-3039A/B J1756 2251 Spin period (s) 0.0227 / 2.77 0.0284 Pulsar/comp. mass (M ) 1.3381(7) / 1.2489(7) 1.341(7) / 1.230(7) Orbital/system parameters Orbital period (h) 2.45 7.67 Inclination ( ) 88.7 68.0 Eccentricity 0.0878 0.181 Trans. velocity (km/s) ~10 < 68 Compare with other DNS systems, e.g.: PSR B1534+12 PSR B1913+16 Eccentricity 0.27 0.62 Trans. velocity (km/s) 107 88

Geodetic precession Companion star perturbs spacetime around pulsar spin axis precesses about orbital angular momentum k δ K s 1 j Orbital plane J i δ: misalignment angle Plane of the sky line of sight varies over time pulse profile change I = i Observer line of sight RDF et al. (2013)

Geodetic precession Companion star perturbs spacetime around pulsar spin axis precesses about orbital angular momentum k δ K s 1 j Orbital plane J i δ: misalignment angle Plane of the sky line of sight varies over time pulse profile change I = i Observer line of sight RDF et al. (2013)

Geodetic precession PSR Precession Period (yr) δ( ) B1534+12 (years) 692 25(4) B1913+16 298 18(6) J0737 3039A 75 J0737 3039B 71 130.0(4) J1756 2251 496 J1906+0746* 165 89(-44, +85)

Geodetic precession B1534+12 PSR Precession Period (yr) B1913+16 δ( ) B1534+12 (years) 692 25(4) B1913+16 298 18(6) J0737 3039A 75 J0737 3039B 71 130.0(4) J1756 2251 496 J1906+0746* 165 89(-44, +85) (Stairs, Living Rev. Relativity 6, (2003), 5) (Taylor & Weisberg, 1989, ApJ, 345, 434; Weisberg, Romani, and Taylor, 1989, ApJ, 347, 1030; Kramer, 1998, ApJ, 509, 856)

Geodetic precession PSR Precession Period (yr) δ( ) B1534+12 (years) 692 25(4) B1913+16 298 18(6) J0737 3039A 75 Fit widths: J0737 3039B 71 130.0(4) beam region ½ opening angle pulse ½ width misalignment angle J1756 2251 (Rafikov & Lai 2006, ApJ, 641, 438) 496 J1906+0746* 165 89(-44, +85) (Damour & Taylor 1992, PRD, 45, 1840) spin/magnetic axis separation spin/los axis separation orbital inclination precession phase

Observations Green Bank Telescope 820 MHz J0737 3039: ~6 years (~8% P prec ) semi-annual concentrated campaigns 1-2 weeks x ~5-8 hr single-epoch combined profiles J1756 2251: ~9.5 years + Lovell ~2 years combined 6-month spans

PSR J0737 3039A RDF et al. 2013

PSR J0737 3039A RDF et al. 2013

PSR J1756 2251 RDF et al. (2014)

Precession and misalignment PSR Precession Period (yr) δ( ) B1534+12 (years) 692 25(4) B1913+16 298 18(6) J0737 3039A 75 < 3.2 J0737 3039B 71 130.0(4) J1756 2251 496 < 34 J1906+0746* 165 89(-44, +85)

Precession and misalignment PSR Precession Period (yr) δ( ) B1534+12 (years) 692 25(4) 95% B1913+16 298 18(6) J0737 3039A 75 < 3.2 J0737 3039B 71 130.0(4) RDF et al. (2014) J1756 2251 496 < 34 J1906+0746* 165 89(-44, +85)

Precession and misalignment PSR Precession 68% 95% Period (yr) δ( ) B1534+12 (years) 692 25(4) B1913+16 298 18(6) J0737 3039A 75 < 3.2 J0737 3039B 71 130.0(4) RDF et al. (2014) J1756 2251 496 < 34 J1906+0746* 165 89(-44, +85)

Precession and misalignment NEW from PALFA! { PSR Lazarus et al. (2016) { Precession Period (yr) δ( ) B1534+12 (years) 692 25(4) B1913+16 298 18(6) J0737 3039A 75 < 3.2 J0737 3039B 71 130.0(4) J1756 2251 496 < 34 J1906+0746* 165 89(-44, +85) J1913+1102 197? Pulsar mass: 1.65(5) Companion mass: 1.24(5) Eccentricity: 0.0895

PSR B1534+12 PSR B1913+16 High eccentricity Large transverse velocity Large spin-orbit misalignment Larger companion mass PSR J0737 3039 PSR J1756 2251 Low eccentricity Low transverse velocity Low spin-orbit misalignment Low companion mass High mass-loss Large pre-natal kick Asymmetric explosion Low mass-loss Low pre-natal kick Symmetric supernova event Type II SN VIOLENT CORE COLLAPSE Electron-capture SN Ultra-stripped Type Ic SN

Symmetric supernovae Electron capture: Secondary O-Ne-Mg core overcomes density threshold Electron degeneracy pressure Chandrasekhar mass Collapse! Faster than instability formation timescale Low kicks Critical mass for collapse B mass + binding energy Almost no mass ejected! Ultra-stripped Type Ic: Mass transfer from a He core to compact companion Very fast core collapse, low kick expected Very low ejecta mass Expected range of resulting NS similar to B pulsar and 1756 companion See Tauris et al. (2013), ApJ, 778, L23

Double neutron star evolution from geometric constraints Robert Ferdman University of East Anglia Bonn NS Workshop X 14 November 2016