Constellations & Stars

Similar documents
Stars and Galaxies 1

Stars & Galaxies. Chapter 27 Modern Earth Science

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth?

CHAPTER 28 STARS AND GALAXIES

Chapter 21 Earth Science 11

Chapter 21: Stars Notes

Beyond the Solar System 2006 Oct 17 Page 1 of 5

8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars

Chapter 28 Stars and Their Characteristics

Beyond Our Solar System Chapter 24

STARS AND GALAXIES STARS

Life Cycle of a Star - Activities

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere.

Modern Astronomy Review #1

Prentice Hall EARTH SCIENCE

Stars and Galaxies. Content Outline for Teaching

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study

CHAPTER 29: STARS BELL RINGER:

StarTalk. Sanjay Yengul May "To know ourselves, we must know the stars."

The Electromagnetic Spectrum

GALAXIES AND STARS. 2. Which star has a higher luminosity and a lower temperature than the Sun? A Rigel B Barnard s Star C Alpha Centauri D Aldebaran

Earth Science, 13e Tarbuck & Lutgens

Directions: For numbers 1-30 please choose the letter that best fits the description.

TAKE A LOOK 2. Identify This star is in the last stage of its life cycle. What is that stage?

CST Prep- 8 th Grade Astronomy

The light from the stars we see at night travel great distances to reach Earth. Other than the sun, Proxima Centauriis the next closest

The Universe. But first, let s talk about light! 2012 Pearson Education, Inc.

Galaxies and Stars. 3. Base your answer to the following question on The reaction below represents an energy-producing process.

Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents

Study Guide Chapter 2

The Life Cycles of Stars. Dr. Jim Lochner, NASA/GSFC

NSCI 314 LIFE IN THE COSMOS

Astronomy Part 1 Regents Questions

Apparent Motion. How do celestial objects appear to move across the sky?

Universe Celestial Object Galaxy Solar System

Stars. The composition of the star It s temperature It s lifespan

What is the sun? The sun is a star at the center of our solar system.

18. Which graph best represents the relationship between the number of sunspots and the amount of magnetic activity in the Sun?

Class Notes: Astronomy

Properties of Stars. Characteristics of Stars

CHAPTER 4 STARS, GALAXIES & THE UNIVERSE

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

Astronomy Universe: all of space and everything in it

Physics Homework Set 2 Sp 2015

Classifying Stars. Scientists classify stars by: 1. Temperature 2. Brightness

Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS.

Stellar Evolution Notes

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE

Chapter 17 Solar System

Galaxies Galore. Types of Galaxies: Star Clusters. Spiral spinning wit arms Elliptical roundish Irregular no set pattern

TEACHER BACKGROUND INFORMATION

What do the Roman numerals mean and how do stars die

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes

Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary

Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way

Solar System Glossary. The point in an object s elliptical orbit farthest from the body it is orbiting

Unit 1: Space. Section 2- Stars

Review Questions for the new topics that will be on the Final Exam

PHYS103 Sec 901 Hour Exam No. 3 Page: 1

3. c 4. a 5. f 6. b 7. e. 1. Stars are bright and hot. 2. Distances between stars are measured in light-years. 3. The sun is a yellow star.

PHYS103 Sec 901 Hour Exam No. 3 Page: 1

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

UNIT 3: Astronomy Chapter 26: Stars and Galaxies (pages )

Physics HW Set 3 Spring 2015

A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars.

Science Period. Astronomy Unit PracticeTest 2014 Sci 7

Chapter 24. Stars, Galaxies & the Universe. Distance units

Introduction to the Universe. What makes up the Universe?

Astronomy. Study of objects in space such as the Sun, stars, planets, comets, gas, & galaxies. *Also, the Earth s place in the universe.

Star Formation A cloud of gas and dust, called a nebula, begins spinning & heating up. Eventually, it gets hot enough for fusion to take place, and a

They developed a graph, called the H-R diagram, that relates the temperature of a star to its absolute magnitude.

chapter 31 Stars and Galaxies

Astronomy Exam 3 - Sun and Stars

Astronomy 104: Second Exam

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date:

The Universe. is space and everything in it.

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Observing the Night Sky. Observing the Night Sky. Observing the Night Sky. Observing the Night Sky. Observing the Night Sky. Chapter 29 THE UNIVERSE

Recall what you know about the Big Bang.

ASTRONOMY 1 EXAM 3 a Name

Chapter 11 Review. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1)

Instructions. Students will underline the portions of the PowerPoint that are underlined.

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9

LIFE CYCLE OF A STAR

The Universe and Galaxies

Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe

PHYS103 Sec 901 Hour Exam No. 3 Practice Version 1 Page: 1

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Life Cycle of a Star Worksheet

Ch. 25 In-Class Notes: Beyond Our Solar System

Ch. 16 & 17: Stellar Evolution and Death

λ = 650 nm = c = m s 1 f =? c = fλ f = c λ = ( m s 1 ) ( m) = = Hz T = 1 f 4.

Textbook Chapters 24 - Stars Textbook Chapter 25 - Universe. Regents Earth Science with Ms. Connery

Ch. 29 The Stars Stellar Evolution

Abundance of Elements. Relative abundance of elements in the Solar System

Stellar Astronomy Sample Questions for Exam 4

Introduction to the Universe

CHAPTER 9: STARS AND GALAXIES

Transcription:

Constellations & Stars

I. Constellations Group of stars that appear to form a pattern in the sky. 88 recognized by International Astronomy Union

A. Zodiac Band of 12 constellations along the ecliptic.

B. Ecliptic the plane of the Earth s orbit around the sun The apparent path that the sun (and planets) appear to move along against the star background.

Ecliptic

C. Circumpolar Constellations Can be seen all year long Never fully set below the horizon Appear to move counter clockwise around Polaris Caused by Earth s Rotation

Circumpolar Constellations

Star Trails

Examples of Circumpolar Constellations 1. Ursa Major The Big Bear 2. Ursa Minor The Little Bear 3. Cassiopeia Queen on Her Throne 4. Draco- The Dragon 5. Cepheus- The King

# of stars seen as circumpolar depends on the observers latitude Further North the observer lives, the more stars will appear circumpolar Earth turns west to east Sky appears to turn east to west

D. Ursa Major Best known constellation Common name is Big Dipper Pointer stars- front 2 stars of the Big Dipper which point to Polaris (North Star)

Big Dipper II. Seasonal Changes in Constellations In Fall: Low over northern horizon Spring: High overhead Cassiopeia In Fall: Straight overhead Spring: Low over northern horizon

Seasonal Change & Nightly change of the Dippers

III. Summer Constellations 1 st 3 bright stars that rise form the Summer Triangle 1. Vega- in Lyra the Harp 2. Altair- in Aquilla the Eagle 3. Deneb in Cygnus the Swan (Northern Cross)

Summer Triangle

IV. Most Famous Winter Contellation Orion Contains: 1. Betelgeuse (Bet el jooz) a bright red super giant star found forming Orion s right shoulder 2. Rigel a blue super giant: 7 th brightest star in the nighttime sky

3 Stars of Orion s Belt Can be used to find 2 other constellations & a star cluster 1. Canis Major- (Big Dog) follow the line made by the 3 stars of Orion s belt down to the left Sirius- the brightest star in the nighttime sky is found in Canis Major

2. Taurus (the Bull) Follow the line made by Orion s belt up & to the right Aldebaran- Red star that is the eye of the bull is the 13 th brightest in the nighttime sky

3. Pleiades Star Cluster (7 sisters) Follow the line made by Orion s belt up to the right, go through Taurus to a clump of stars to the right. Called Subaru in Japan means Unite

V. Kinds of Stars A. Red Giant - large red star at least 10x diameter of the sun Old Stars Ex. Aldebaran The sun will swell into a Red Giant when it is old

B. Super Giant Largest of all stars 100x more luminous Explode as a Super Nova Can form Black Holes Ex. Betelgeuse, Rigel, Polaris

C. Dwarf Stars 1. Less luminous 2. Very dense, mostly carbon 3. Tightly packed nuclei 4. Remains of a red giant that ran out of fuel 5. 1 cup full of star =20 tons or 5 elephants. 6. Most are red/orange/yellow 7. White dwarf is the exception to the color 8. Sun is a yellow dwarf

Size Comparison of Various Stars

VI. Variable Stars Change in brightness over regular periods of time Ex. Cepheid Variables/Pulsating Stars Binary Stars & Eclipsing Binary Stars

A. Cepheid Variables/ Pulsating Stars Change in brightness as they expand & contract Unequal balance between gravity & nuclear fusion Ex. Polaris, Betelgeuse

B. Binary Star Systems Two stars of unequal brightness revolving around a center point Ex. Algol & its companion star in Perseus

C. Eclipsing Binary Stars Two close stars that appear to be a single star varying in brightness. The variation in brightness is due to one star moving in front of or behind the other star. Occurs because we see the system on edge instead of from above or below

VII. Pulsars or Neutron stars A. Discovered in 1967 (LGM) B. A distant heavenly object that emits rapid pulses of light & radio waves C. Formed when a Super Giant collapses; Protons & Electrons are forced so close together that they fuse and form only neutrons

Twinkle Twinkle Little Star "Twinkling Stars" are due to Earth's atmosphere

VIII. Life Cycle of a Medium Mass Star 1. Nebula 2. Protostar 3. New/Stable State Star 4. Red Giant 5. Planetary Nebula 6. White Dwarf 7. Black Dwarf

1. Nebulae (Plural of Nebula) Space gas seen as faint glowing clouds Mostly hydrogen Star dust is extremely small, smaller than a particle of smoke & widely separated, with more than 300 ft. between individual particles. Nebulae still hinder star gazing because they absorb light which passes through them.

Types of Nebulae Diffuse Nebula - gases glow from stars w/in them Ex. Nebula found in Sagittarius

Types of Nebulae Dark Nebula - nebula not near a bright star Ex. Horse Head Nebula in Orion

2. Protostar Shrinking gas balls, caused by a swirl of gas forming dense areas. The gravity of the dense swirl in turn attracts nearby gases so a ball forms. Nuclear fusion occurs & Helium is formed from Hydrogen A new star is born in our galaxy every 18 days

3. Stable State Star Star that releases energy in enough force to counter balance gravity Star stops contracting Also known as a main sequence star Ex. Sun

4. Planetary Nebula The outer layers of the Red Giant puff out more and more. The star loses gravitational hold on its outer layers and they get pushed away by the pressure exerted from solar winds

Planetary Nebula

5. White Dwarf Fuel is used up No nuclear fusion occurring Remaining heat radiates into space

IX. Life Cycle of a Massive Star 1. 1st three steps are similar 2. Super Giant 3. Super Nova 4. Neutron Star / Pulsar 5. Black Hole

1. Super Giant Rare stars, largest of all 100x more luminous Only stars with a lot of mass can become super giants Some are almost as large as our entire solar system Ex. Betelgeuse & Rigel

2. Super Nova Explosion from a massive Super Giant Outer layer blasts away at end of Life Cycle Emits light, heat, X-rays, & neutrinos Leaves behind a neutron star or black hole

3. Neutron Star/ Pulsar The remains of a super nova Very small, super-dense star which is composed mostly of tightly-packed neutrons Rapidly spinning leftovers of a star Emits energy in pulses

4. Black Hole Occurs when a star's remaining mass is greater than three times the mass of the Sun Star contracts tremendously Incredibly dense with a gravitational field so strong that even light cannot escape.

Life Cycle of a Massive Star

X. Distance to stars A. The Sun is closest star to Earth B. Takes light 8 minutes to reach Earth C. Avg. distance:150,000,000km = 1 AU distance from Earth to the Sun D. Next nearest star is Proxima Centauri 4.2 light years away; it can only be seen in the southern hemisphere

E. Light year The distance light has traveled in a year 9.5 x 10 12 Km/yr Speed of light 300,000 Km /sec

XI. Physical Properties of Stars A. Nuclear fusion supplies the energy for stars Huge size & mass of a star means outer layers press inward w/ tremendous pressure Hydrogen ignites Star becomes a huge nuclear bomb Hydrogen nuclei combine to form Helium

B. Color of star depends on surface temp. 1. Blue - hottest stars Ex. Rigel in Orion; Vega in Lyra; Sirius in Canis Major 2. Yellow - medium stars ex. Sun 3. Red - coolest stars Ex. Betelgeuse in Orion, Antares the heart of Scorpio, Aldebaran in Taurus

C. Star size -Varies, large range Smallest can be smaller than Earth Largest may be 600,000,000 x Earth.

D. The Sun is an average star yellow in color 300,000 x the mass of Earth

XII. Luminosity Brightness of a star Depends on size & temperature Hertzsprung-Russell Diagram graphs Absolute Magnitude (or Luminosity) vs. Temperature of stars Shows the life cycle of stars

Hertzsprung-Russell Diagram

A. Absolute Magnitude Measure of the amount of light it actually gives off if all stars were placed a distance of 32.6 light years away Lower # means brighter star Negative # s are the brightest Ex. Sun = 4.75 Sirius = 1.4 Rigel = 7.0 Rigel s the Brightest of the 3 listed if all were lined up next to each other.

B. Apparent Magnitude A measure of the amount of light received on Earth Stars below 0 are brightest Each magnitude differs by 2.5 1 st magnitude is 100 x brighter than 6 th magnitude Ex. Sun = 26.8 Sirius = 1.45 Full Moon 12.6 Rigel =.11 Sun is the brightest in our sky.

XIII. Galaxies Systems containing millions or billions of stars, gas, & dust held together by gravity Ex. Milky Way There are great distances between galaxies The Milky Way belongs to a group or cluster of galaxies called the local group

Spiral Galaxy Like the Milky Way

Three major classes of galaxies: 1. Elliptical - shaped like large ovals or football shape 2. Spiral - pinwheel shaped; our sun is on a spiral arm of the Milky Way 3. Irregular - many different shapes that aren't like the other two

XIV. Quasar Quasi stellar radio source Galaxies, very far away, with bright centers Thought to have a super massive black hole at center Most luminous objects known to man

XV. Electromagnetic Spectrum The arrangement of electromagnetic radiation from Radio waves to Gamma waves

Stars Emit: 1. Visible light 2. X-rays 3. Radio waves 4. Infrared waves 5. Ultraviolet waves

Venus & Saturn by E-spectrum Ultra violet Visible Infrared Radio Ultra violet Visible Infrared Radio

X-ray & Ultra Violet Image of Sun

Visible, Infrared & Radio Images of Sun

A. Electromagnetic waves: Differ in wavelength & frequency All electromagnetic waves travel at the speed of light; 300,000 km/sec

Parts of a Wave

a has a longer wavelength (distance from one crest to another) but lower frequency ( # of waves that pass by a point in a second)

b has a shorter wavelength but a higher frequency

B. Spectroscope Instrument that separates light into its colors. Contains: Prism at one end Slit at opposite end which lines up with the light source

C. 3 Types of Spectra 1. Continuous Spectrum 2. Brightline Spectrum 3. Darkline Spectrum

How Spectra are Produced

1. Continuous Spectrum Produced by a glowing solid Example a Tungsten white light bulb, & white sunlight.

Continuous Spectrum Cont Continuous set of emission lines forming an unbroken band of colors from red to violet. Shows the source is sending out light of all visible wavelengths.

Visible Spectrum red orange yellow green blue indigo violet ROY G BIV All the colors of the rainbow A continuous spectrum

2. Dark-Line Spectrum / Absorption Spectrum Produced when a cooler gas lies between the observer and an object emitting a continuous spectrum Example: 1. The atmosphere of planets 2.Outer layers of a star

Absorption Spectrum Cont The cooler gas absorbs specific wavelengths of radiation passing through it. This spectrum appears as a continuous spectrum of all colors with a number of gaps or dark lines throughout it.

3. Bright-Line Spectrum / Emission Spectrum Produced by a glowing gas which radiates energy at specific wavelengths characteristic of the element or elements composing the gas Example Neon signs, black lights, LED s

Emission Spectrum Cont This spectrum consists of a number of bright lines against a dark background. Each elements has its own distinctive spectra much like a fingerprint http://jersey.uoregon.edu/vlab/elements/elements.html

XVI. The Doppler Effect as sound approaches the wavelength is compressed so the pitch is higher as sound leaves the wavelength is stretched out so the pitch is lower The same thing happens with light

Doppler Effect http://hea-www.harvard.edu/~efortin/thesis/html/doppler.shtml

Red Shift If a star is moving away from Earth there is a red shift, of its line spectra; if the star is moving toward the Earth there is a blue shift of its line spectra

Red Shift Red shift is evidence the universe is expanding.