Quarkonia Production and Dissociation in a Langevin Approach

Similar documents
Heavy-Quark Transport in the QGP

Disintegration of quarkonia in QGP due to time dependent potential

Heavy-Quark Transport in the QGP

Heavy flavor with

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Disintegration of quarkonia in QGP due to time dependent potential

Heavy quarks and charmonium at RHIC and LHC within a partonic transport model

Ruth-Moufang-Str. 1, Frankfurt am Main, Germany. Max-von-Laue-Str. 1, Frankfurt am Main, Germany and

arxiv: v1 [hep-ph] 11 Jun 2008

arxiv:hep-ph/ v2 8 Aug 2002

J/Ψ-suppression in the hadron resonance gas

arxiv: v2 [hep-ph] 2 Nov 2015

Steffen Hauf

Charmonium Production and the Quark Gluon Plasma

Heavy-ion collisions in a fixed target mode at the LHC beams

Kinetics of the chiral phase transition

PoS(EPS-HEP2015)214. Spectra and elliptic flow of charmed hadrons in HYDJET++ model

arxiv: v1 [hep-ph] 18 Feb 2016

annihilation of charm quarks in the plasma

Studies on the QCD Phase Diagram at SPS and FAIR

Production of Charmed Hadrons by Statistical Hadronization of a Quark Gluon Plasma as a proof of deconfinement

arxiv:nucl-th/ v1 5 Sep 2000

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

arxiv:nucl-th/ v2 18 Aug 2000

Phenomenology of Heavy-Ion Collisions

Heavy Quarks in Heavy-Ion Collisions

arxiv: v1 [nucl-ex] 12 May 2008

The Quark-Gluon plasma in the LHC era

Can Momentum Correlations Proof Kinetic Equilibration in. Heavy Ion Collisions at 160 AGeV?

arxiv: v1 [nucl-ex] 22 Jan 2012

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma

arxiv:hep-ph/ v1 6 Feb 1997

Fluctuations of Conserved Charges

Measures of charge fluctuations in nuclear collisions

Strange Hadron Production from STAR Fixed-Target Program

Heavy Ions at the LHC: Selected Predictions. Georg Wolschin. Institut für Theoretische Physik der Universität, Heidelberg, Germany

Bottomonia physics at RHIC and LHC energies

Measurements of the electron-positron continuum in ALICE

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

LHC: Status and Highlights

relativistic nuclear collisions from FAIR to LHC energies and the phase structure of QCD

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions.

Heavy quark and quarkonium evolutions in heavy ion collisions

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

Overview* of experimental results in heavy ion collisions

arxiv: v1 [nucl-th] 2 Mar 2015

Partonic transport simulations of jet quenching

arxiv:hep-ph/ v1 25 Jul 2005

Charm production at RHIC

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from

Heavy Probes in Heavy-Ion Collisions Theory Part IV

colliding ultra-relativistic nuclei at the LHC results and perspectives

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics

Selected highlights from the STAR experiment at RHIC

arxiv:hep-ph/ v1 4 Nov 1998

arxiv: v1 [nucl-ex] 1 Oct 2018

Quark coalescence for charmed mesons in ultrarelativistic heavy-ion collisions

Photon Production in a Hadronic Transport Approach

Overview of anisotropic flow measurements from ALICE

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

Quarkonium production measurement in Pb-Pb collisions at forward and mid rapidity with the ALICE experiment

Bulk matter formed in Pb Pb collisions at the LHC

Searching For p+ p+ Rapidity Dependent Correlations in Ultra-relativistic Quantum Molecular Data. Abstract

J/ suppression in relativistic heavy-ion collisions

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

Recent Results of NA49

arxiv:nucl-th/ v1 22 Jul 1996

Helmut Satz Fakultät für Physik, Universität Bielefeld, D Bielefeld, Germany and Theory Division, CERN, CH-1211 Geneva 23, Switzerland

arxiv: v1 [hep-ph] 30 Dec 2018

Soft physics results from the PHENIX experiment

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

New results related to QGP-like effects in small systems with ALICE

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

STAR heavy-ion highlights

Strangeness production in heavy ion collisions

Latest results on heavy flavor di-lepton (p-pb and Pb-Pb)

MD Simulations of classical sqgp

High Energy Frontier Recent Results from the LHC: Heavy Ions I

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions

Diffusion in Relativistic Systems

arxiv:nucl-th/ v2 15 Oct 2001

Pions in the quark matter phase diagram

A prediction from string theory, with strings attached

arxiv: v1 [nucl-ex] 10 Feb 2012

Charmonium production in antiproton-induced reactions on nuclei

Investigation of Mach cones and the corresponding two-particle correlations in a microscopic transport model

snn = 200 GeV Au+Au collisions with the STAR experiment

Selected highlights from RHIC

arxiv:hep-ph/ v1 9 Jul 1997

Papers by Helen Caines

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab

Heavy flavour production at RHIC and LHC

Correlations of Electrons from Heavy Flavor Decay with Hadrons in Au+Au and p+p Collisions arxiv: v1 [nucl-ex] 11 Jul 2011

Studying hot QCD matter at the CERN-LHC with heavy quarks

arxiv: v1 [hep-ph] 8 Nov 2017

arxiv: v1 [hep-ex] 14 Jan 2016

PoS(Confinement8)110. Latest Results on High-p t Data and Baryon Production from NA49

Baryonic Spectral Functions at Finite Temperature

Transcription:

proceedings Proceedings Quarkonia Production and Dissociation in a Langevin Approach Nadja Krenz 1, Hendrik van Hees 1 and Carsten Greiner 1, * Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany hees@th.physik.uni-frankfurt.de (H. v. H); Carsten.Greiner@th.physik.uni-frankfurt.de (C. G.) * Correspondence: krenz@th.physik.uni-frankfurt.de Presented at Hot Quarks 2018 Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions, Texel, The Netherlands, 7 14 September 2018. Received: date; Accepted: date; Published: date Abstract: We aim to describe the process of dissociation and recombination of quarkonia in the quark-gluon plasma. Therefore we developed a model which allows to observe the time evolution of a system with various numbers of charm-anticharm-quark pairs at different temperatures. The motion of the heavy quarks is realized within a Langevin approach. We use a simplified version of a formalism developed by Blaizot et al. in which an Abelian plasma is considered where the heavy quarks interact over a Coulomb like potential. We have demonstrated, that the system reaches the expected thermal distribution in the equilibrium limit. Keywords: heavy quarks; Langevin equation; quarkonia; charmonium; transport theory; recombination 1. Introduction Heavy quarks are an important tool for the investigation of the quark-gluon plasma (QGP). They are primarily produced in the primordial hard collisions of the heavy ion collision, and their number is conserved until the hadronic freezout. Therefore heavy quarks carry information about the whole evolution of the QGP. Especially the surviving probability of heavy-quark bound states such as J/ψ or Υ can give an insight to the medium properties. The potential between two heavy quarks is screened by the surrounding medium. As suggested long ago, the suppression of J/ψ could be an evidence for the formation of the deconfined state [1]. Higher temperatures should lead to larger screening effects with a full suppression of J/ψ at very high beam energies. The predicted suppression was found at the SPS at CERN [2] but measurements at RHIC at higher beam energies did not show an increase of the suppression [3]. To explain the results the process of recombination of J/ψ inside the medium has been suggested. The theoretical investigation of recombination processes is therefore necessary to predict the number of J/ψ-mesons measured in the experiments. The comparatively large masses of heavy quarks makes their motion accessible by Langevin dynamics [4]. The forces that act on the charm quarks by using the Langevin equation are a drag force and random momentum kicks due to collisions with the medium particles. To enable the formation of bound states we add a potential between the heavy quarks. 2. Formalism For the realization of the heavy-quark motion we adopt the formalism by Blaizot et al. [5]. In this description the heavy-quark interaction is reduced to an Abelian model, which means that confinement Proceedings 2019, xx, 5; doi:10.3390/proceedings2019005001 www.mdpi.com/journal/proceedings

Proceedings 2019, xx, 5 2 of 6 and color effects are neglected. The Langevin update rules for the coordinate x and the momentum p of a heavy quark with mass M read dr dt = 1 dp p and 2M dt = γp + F (r r) + 2MTγ tρ, (1) where γ is the friction coefficient due to the interaction with the medium, F (r r) is the force resulting from the heavy-quark potential, T is the temperature of the medium, and ρ are Gaussian normal-distributed random numbers. For the pertinent diffusion coefficient the usual Einstein dissipation-fluctuation relation has been employed. The quark-anti-quark potential is given by a screened Coulomb potential with a cut-off for large momenta at small distances. Following [5] the cut-off is taken to be Λ = 4 GeV. The potential for different temperatures is displayed in Figure 1. 0-0.2 -g 2 V [GeV] -0.4-0.6-0.8 T=350 MeV T=250 MeV T=200 MeV T=160 MeV -1-1.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 r c -r cbar [fm] Figure 1. The charm-anti-charm-quark pair potential for different temperatures. The drag force in [5] contains a dependence on the distance between the heavy quarks. For simplicity we neglect this dependence in our simulation and use a constant drag coefficient. In a numerical calculation a cut-off is also necessary for the friction. With the same cut-off as for the potential the drag coefficient is given by γ = m2 D g2 24πM ln ( ) 1 + Λ2 m 2 D Λ 2 m 2 D Λ 2 m 2 D, (2) + 1 where m D is the Debye screening mass, defined as m 2 D = 4 3 g2 T 2, which is the perturbative expression for a two-flavor quark-gluon plasma. The gauge coupling g is given by the relation [6] g 2 = 4πα s = 4πα s(t C ) ( ), with C = 0.76, T C = 160 MeV, α s (T C ) = 0.5, (3) 1 + Cln TTC where T C is the critical temperature. The value of γ at different temperatures can be seen in Figure 2. The charm-quark mass is set to M = 1.8 GeV.

Proceedings 2019, xx, 5 3 of 6 0.24 0.23 (T) 0.22 (T) [fm -1 ] 0.21 0.2 0.19 0.18 0.17 3. Results and Discussion 0.16 0.16 0.2 0.24 0.28 0.32 0.36 0.4 Temperature [GeV] Figure 2. The friction coefficient for different temperatures. First the simulation was tested with a single charm-anticharm pair in the medium. The following simulations are done inside a cubic box with side-length 8 fm. To define bound states we use the classical condition that two objects are bound if the energy of the pair is negative. We calculate the relative energy E rel of the pair, which means subtracting the center-of-mass energy from the total energy. After the system reaches equilibrium the distribution of the relative energy should be given by the classical density of states ( dn = C de rel R d3 r 3 R d3 p rel δ(e rel H rel )exp 3 H rel T ), (4) where H rel is the Hamiltonian of the pair and C is a normalization constant. The results are shown in Figure 3. For this plot both curves are normalized to one. We see that the numerical calculation perfectly fits to the analytic function. 10 1 10 0 numerical results analytic function dn/de rel [GeV -1 ] 10-1 10-2 10-3 10-4 10-5 -2-1.5-1 -0.5 0 0.5 1 1.5 2 E rel [GeV] Figure 3. Pair-energy distribution at equilibrium. The simulation is done assuming a cubic box with boxsize 8 fm at a temperature of T = 160 MeV. We also found this agreement for different temperatures, as can be seen in Figure 4. For higher temperatures the number of bound states in equilibrium decreases due to stronger screening effects.

Proceedings 2019, xx, 5 4 of 6 dn/de rel [GeV -1 ] 10 1 10 0 10-1 10-2 10-3 10-4 numeric T=200 MeV analytic T=200 MeV numeric T=250 MeV analytic T=250 MeV numeric T=350 MeV analytic T=350 MeV 10-5 10-6 -2-1.5-1 -0.5 0 0.5 1 1.5 2 E rel [GeV] Figure 4. Pair-energy distribution for different temperatures. Due to stronger screening effects higher temperatures lead to a smaller yield of bound states. We have also investigated the time evolution of the bound states at a temperature of T = 160 MeV for two initial conditions. In the first simulation the charm and anti-charm quarks are initially randomly placed inside the box. For the second simulation the heavy quarks are initially created as bound states with a pair energy of 700 MeV, which approximately corresponds to the maximum of the peak on the left panel of Figure 3. The momenta are set back-to-back with a relative velocity that is taken from a Maxwell distribution with its center at the average value of typical relative velocities of charmonium v 2 0 0.3 [7]. As shown in Figure 5, in both cases the fraction of bound states in the system equilibrates to the same value as expected. At this point the dissociation and recombination rates are equal and therefore the principle of detailed balance is fulfilled. We notice, that in both cases we found very long timescales for the equilibration. 0.03 0.025 start free start bound fraction of bound states 0.02 0.015 0.01 0.005 0 0 100 200 300 400 500 600 time [fm] Figure 5. Time evolution of the fraction of bound states with the charm-anticharm pairs produced initially bound (violet dashed line) or placed randomly inside the box (green solid line). Both curves lead to the same equilibrium limit but the equilibration time is longer in case of initial bound states. To see the influence of the medium s temperature on the equilibration time we calculated the time evolution at different temperatures. In this simulation we produced five charm-anticharm pairs, initially created as bound states. The results are displayed in Figure 6.

Proceedings 2019, xx, 5 5 of 6 10 0 T=160 MeV T=200 MeV T=250 MeV T=350 MeV fraction of bound states 10-1 10-2 10-3 0 50 100 150 200 250 300 time[fm] Figure 6. Time evolution of the fraction of bound states for different temperatures. Higher temperatures lead to a less amount of bound states and to a faster equilibration. Larger screening effects at higher temperatures lead to a smaller fraction of bound states at equilibrium. Also the equilibration time decreases. This is expected, because the friction coefficient increases with temperature. The momentum and therefore also the energy transfer in the collisions with the light medium constituents is higher. To check if our simulation is also in accordance with an equilibrated thermodynamic system, we calculated the particle number using the grand canonical partition function. Since the dissociation and recombination of a J/ψ-meson is a process of the kind J/ψ c + c, the chemical potentials are connected by µ J/ψ = 2µ c which means for the fugacity λ J/ψ = λ 2 c. The number of J/ψ in the system can then be calculated by knowing the initial number of charm-anticharm-pairs. We compared the results from our simulation with those obtained by using the grand canonical partition function for three different box sizes in Table 1. We find that both values are of the same order of magnitude. Table 1. Comparison between the fraction of bound states obtained with our simulation and that calculated by using the grand canonical partition function Volume Grand Canonical Fraction of J/ψ Numerical Fraction of J/ψ 8 3 fm 3 0.0066 0.0059 10 3 fm 3 0.0035 0.0029 12 3 fm 3 0.002 0.0017 We could show that our model passes all equilibrium tests. Various extensions are possible to improve the model. The long-time goal of this project is to obtain a full in-medium quantum Langevin treatment of quarkonia. Funding: This work was supported by the DFG through the grant CRC-TR 211. Conflicts of Interest: The authors declare no conflict of interest. References 1. Matsui, T.; Satz, H. J/ψ Suppression by Quark-Gluon Plasma Formation. Phys. Lett. B 1986, 178, 416 422, doi:10.1016/0370-2693(86)91404-8. 2. Baglin, C.; Ramos, S.; Ferreira, R.; Drapier, O.; Guillaud, J.P.; Kluberg, L.; Racca, E.; Fredj, L.; Abreu, M.C.; Busson, P.; et al. Production de J/ψ dans les collisions de proton, oxygène et soufre sur cibles lourdes, á 200 GeV/N. Can. J. Phys. 1989, 67, 1222 1227. doi:10.1139/p89-205

Proceedings 2019, xx, 5 6 of 6 3. Abelev, B. I. et al (STAR Collaboration) J/ψ production at high transverse momenta in p + p and Cu + Cu collisions at s NN = 200 GeV. Phys. Rev. C 2009, 80, 041902, doi:10.1103/physrevc.80.041902. 4. Svetitsky, B. Diffusion of charmed quarks in the quark-gluon plasma. Phys. Rev. D 1988, 37, 2484 2491, doi:10.1103/physrevd.37.2484. 5. Blaizot, J.P.; De Boni, D.; Faccioli, P.; Garberoglio, G. Heavy quark bound states in a quark gluon plasma: Dissociation and recombination. Nucl. Phys. A 2016, 946, 49 88, doi:10.1016/j.nuclphysa.2015.10.011. 6. Lettessier J and Rafelski J. Hadrons and Quark-Gluon Plasma, Cambridge University Press 2004, Cambridge, New York, Melbourne, Madrid, Cape Town. 7. Bodwin, G.T.; Kang, D.; Kim, T.; Lee, J.; Yu, C. Relativistic Corrections to e+ e > J/psi + eta(c) in a Potential Model. AIP Conf. Proc. 2007, 892, 315 317, doi:10.1063/1.2714404. 8. Young, C.; Shuryak, E. Charmonium in strongly coupled quark-gluon plasma. Phys. Rev. C 2009, 79, 034907, doi:10.1103/physrevc.79.034907. c 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).