Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Similar documents
EllipticTheta2. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

InverseBetaRegularized

Factorial2. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Round. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

EllipticK. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Ceiling. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Introductions to ExpIntegralEi

JacobiDS Notations Traditional name Traditional notation Mathematica StandardForm notation Primary definition

Introductions to InverseErfc

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

PARITY OF THE COEFFICIENTS OF KLEIN S j-function

SOLUTIONS FOR THE THIRD PROBLEM SET

Ramanujan s first letter to Hardy: 5 + = 1 + e 2π 1 + e 4π 1 +

Addition sequences and numerical evaluation of modular forms

On values of Modular Forms at Algebraic Points

Part IA Numbers and Sets

ETA-QUOTIENTS AND ELLIPTIC CURVES

Material covered: Class numbers of quadratic fields, Valuations, Completions of fields.

Number Theory, Algebra and Analysis. William Yslas Vélez Department of Mathematics University of Arizona

Conic Theta Functions and their relations to classical theta functions

ON SUMS OF PRIMES FROM BEATTY SEQUENCES. Angel V. Kumchev 1 Department of Mathematics, Towson University, Towson, MD , U.S.A.

The Feynman Propagator and Cauchy s Theorem

Solutions to Practice Final

1. Introduction and statement of results This paper concerns the deep properties of the modular forms and mock modular forms.

Pade Approximations and the Transcendence

Linear Systems Theory

6.2 Their Derivatives

THE ARITHMETIC OF BORCHERDS EXPONENTS. Jan H. Bruinier and Ken Ono

GammaRegularized. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Projects on elliptic curves and modular forms

NOTES ON IRRATIONALITY AND TRANSCENDENCE

MODULE 1: FOUNDATIONS OF MATHEMATICS

Series of Error Terms for Rational Approximations of Irrational Numbers

Differential equations concerned with mirror symmetry of toric K3 hypersurfaces with arithmetic properties. Atsuhira Nagano (University of Tokyo)

The j-function, the golden ratio, and rigid meromorphic cocycles

Appendix of Color-Plots

Sampling and Discrete Time. Discrete-Time Signal Description. Sinusoids. Sampling and Discrete Time. Sinusoids An Aperiodic Sinusoid.

A system that is both linear and time-invariant is called linear time-invariant (LTI).

Notes on Equidistribution

Part II. Riemann Surfaces. Year

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS

Computations Under Time Constraints: Algorithms Developed for Fuzzy Computations can Help

ABELIAN FUNCTIONS Abel's theorem and the allied theory of theta functions

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Constructing Class invariants

CONSEQUENCES OF POWER SERIES REPRESENTATION

Dyon degeneracies from Mathieu moonshine

The Riemann hypothesis and holomorphic index in complex dynamics

A SHORT INTRODUCTION TO HILBERT MODULAR SURFACES AND HIRZEBRUCH-ZAGIER DIVISORS

Sporadic and related groups. Lecture 15 Matrix representations of sporadic groups.

Don Zagier s work on singular moduli

Prime Numbers and Irrational Numbers

On repdigits as product of consecutive Lucas numbers

On Normal Numbers. Theodore A. Slaman. University of California Berkeley

Existence of a Limit on a Dense Set, and. Construction of Continuous Functions on Special Sets

Fourier transforms, Generalised functions and Greens functions

Axioms for the Real Number System

College Algebra. Basics to Theory of Equations. Chapter Goals and Assessment. John J. Schiller and Marie A. Wurster. Slide 1

Some. Manin-Mumford. Problems

Irrationality proofs, moduli spaces, and dinner parties

Modular forms and the Hilbert class field

Research Article A Note about the General Meromorphic Solutions of the Fisher Equation

NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE

arxiv:solv-int/ v3 28 Apr 1998

(τ) = q (1 q n ) 24. E 4 (τ) = q q q 3 + = (1 q) 240 (1 q 2 ) (1 q 3 ) (1.1)

Arithmetic properties of periodic points of quadratic maps, II

Borcherds proof of the moonshine conjecture

SOME FIFTH ROOTS THAT ARE CONSTRUCTIBLE BY MARKED RULER AND COMPASS

Ramanujan and the Modular j-invariant

Efficient implementation of the Hardy-Ramanujan-Rademacher formula

SPECIAL FUNCTIONS AN INTRODUCTION TO THE CLASSICAL FUNCTIONS OF MATHEMATICAL PHYSICS

Arithmetic properties of harmonic weak Maass forms for some small half integral weights

THE NONCOMMUTATIVE TORUS

TRANSCENDENTAL NUMBERS AND PERIODS. Contents

1 Solutions in cylindrical coordinates: Bessel functions

On a Principal Ideal Domain that is not a Euclidean Domain

17 The functional equation

LECTURE-20 : ISOLATED SINGULARITIES. A punctured domain is an open set with a point removed. For p Ω, we use the notation

Math 603, Spring 2003, HW 6, due 4/21/2003

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0

Part I, Number Systems. CS131 Mathematics for Computer Scientists II Note 1 INTEGERS

Alternate Locations of Equilibrium Points and Poles in Complex Rational Differential Equations

Public-key Cryptography: Theory and Practice

Generic Approximation and Interpolation by Entire Functions via Restriction of the Values of the Derivatives

Differential operators on Jacobi forms and special values of certain Dirichlet series

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016

Irrationality exponent and rational approximations with prescribed growth

ELLIPTIC FUNCTIONS AND THETA FUNCTIONS

Problems on Growth of Hecke fields

Mathematics 242 Principles of Analysis Solutions for Problem Set 5 Due: March 15, 2013

The Mysterious World of Normal Numbers

An Introduction to Complex Function Theory

Dependence of logarithms on commutative algebraic groups

A Note on the Transcendence of Zeros of a Certain Family of Weakly Holomorphic Forms

SYMMETRY AND SPECIALIZABILITY IN THE CONTINUED FRACTION EXPANSIONS OF SOME INFINITE PRODUCTS

Apéry Numbers, Franel Numbers and Binary Quadratic Forms

The Z transform (2) Alexandra Branzan Albu ELEC 310-Spring 2009-Lecture 28 1

THE JACOBIAN AND FORMAL GROUP OF A CURVE OF GENUS 2 OVER AN ARBITRARY GROUND FIELD E. V. Flynn, Mathematical Institute, University of Oxford

Moonshine: Lecture 3. Moonshine: Lecture 3. Ken Ono (Emory University)

Transcription:

KleinInvariant Notations Traditional name Klein invariant modular function Traditional notation z Mathematica StandardForm notation KleinInvariant z Primary definition 09.50.0.0001.01 ϑ 0, Π z 8 ϑ 3 0, Π z 8 ϑ 4 0, Π z 8 3 ; Im z 0 54 ϑ 0, Π z ϑ 3 0, Π z ϑ 4 0, Π z 8 This definition can be continued to selected points on the real axis. Specific values Specialized values 09.50.03.0001.01 m 1 ; m Values at fixed points Values at complex z 09.50.03.000.01 1 Values at quadratic irrationalities (Heegner Numbers) 09.50.03.0013.01 1 3 1

http://functions.wolfram.com 1 3 1 7 1 11 1 19 1 3 3 1 43 1 67 1 163 09.50.03.0004.01 0 09.50.03.0005.01 15 64 09.50.03.0006.01 51 7 09.50.03.0007.01 51 09.50.03.0008.01 64 000 9 09.50.03.0009.01 51 000 09.50.03.0010.01 85 184 000 09.50.03.0011.01 151 931 373 056 000 Values at infinities 09.50.03.001.01 General characteristics Domain and analyticity z is an analytical function of z which is defined over the upper half of the complex z-plane. 09.50.04.0001.01 z z Symmetries and periodicities Periodicity

http://functions.wolfram.com 3 09.50.04.000.01 m z ; m Poles and essential singularities On the boundary of analyticity the function z has a dense set of poles. 09.50.04.0003.01 ing z z ; Im z 0 Branch points The function z does not have branch points. 09.50.04.0004.01 z z Branch cuts The function z does not have branch cuts. 09.50.04.0005.01 z z Natural boundary of analyticity The real axis Im z 0 is the natural boundary of the region of analyticity. 09.50.04.0006.01 z z, Series representations Generalized power series Expansions at generic point z z 0 For the function itself z z 0 09.50.06.0003.01 8 K w w 1 w Λ z 0 Λ z 0 1 Λ z 0 3 3 Λ z 0 3 Λ z 0 7 K 1 w K w E w E 1 w K w Λ z 0 1 3 Λ z 0 3 z z 0 8 1 w w Λ z 0 Λ z 0 1 7 K 1 w E w K w E 1 w K w Λ z 0 1 4 Λ z 0 4 E w Λ z 0 Λ z 0 6 7 Λ z 0 5 7 Λ z 0 4 7 Λ z 0 7 Λ z 0 w K w Λ z 0 7 9 Λ z 0 6 13 Λ z 0 5 4 Λ z 0 4 9 Λ z 0 3 11 Λ z 0 18 Λ z 0 w Λ z 0 6 3 Λ z 0 5 Λ z 0 4 Λ z 0 3 9 Λ z 0 10 Λ z 0 3 6 K w 3 z z 0 ; z z 0 w q 1 Π z 0

http://functions.wolfram.com 4 09.50.06.0004.01 z z 0 1 O z z 0 Exponential Fourier series 09.50.06.0001.01 1 178 Π z 744 a k k Π z ; a k Π k 1 1 A k I 1 4 Π k 1 A k h 0 Π h k H, h 1,gcd h, exp ; h H, h mod 1 09.50.06.000.01 1 178 Π z 744 a k k Π z ; a 1 196 884 a 1 493 760 a 3 864 99 970 a 4 0 45 856 56, a 5 333 0 640 600 n 1 a Ν a n 1 1 a n a n a k a n k ; n Ν Ν mod 4 0 4 a Ν a n 3 a a n 1 a n 1 Ν 1 Ν mod 4 1 4 a n 1 1 a n n a Ν a n a k a n k 1 ; n Ν Ν mod 4 4 a Ν a n 4 a a n 1 1 a n 1 Ν 3 Ν mod 4 3 4 n 1 n a n a k a n k 1 k 1 a k a 4 n k a k a 4 n 4 k ; n n 1 a n 1 a k a n k 3 1 k 1 a k a 4 n k a k a 4 n 4 k ; n n n n 1 Differential equations Ordinary nonlinear differential equations 09.50.13.0001.01 36 w z 41 w z 3 w z 4 7 w z 1 w z w 3 z w z 108 w z 1 w z w z 0 ; w z z Transformations Transformations and argument simplifications Argument involving basic arithmetic operations

http://functions.wolfram.com 5 09.50.16.0001.01 z 1 z 09.50.16.000.01 1 z z Identities Functional identities 09.50.17.0001.01 z 1 09.50.17.000.01 1 z 09.50.17.0003.01 64 z 3 110 59 z z 95 3 z z 6000 z 95 3 z 1 510 15 z 187 500 64 z 3 6000 z 187 500 z 1 953 15 0 Differentiation Low-order differentiation 09.50.0.0005.01 0 z z 09.50.0.0001.0 16 K Λ z Λ z Λ z 1 Λ z 1 Λ z Λ z 1 7 Π Λ z 1 Λ z 09.50.0.000.01 z Π z 864 Π z k a k k Π z ; a k Π k 1 1 A k I 1 4 Π k 1 A k h 0 Π h k H, h 1,gcd h, exp ; h H, h mod 1 09.50.0.0003.01 z Π z 864 Π z k a k k Π z ; a k Π k 1 1 A k I 1 4 Π k 1 A k h 0 Π h k H, h 1,gcd h, exp ; h H, h mod 1

http://functions.wolfram.com 6 09.50.0.0004.0 z 64 K Λ z 3 E Λ z Λ z Λ z 1 Λ z 1 Λ z 1 Λ z z 7 Π Λ z 1 Λ z 1 K Λ z Λ z Λ z 1 4 Λ z 6 11 Λ z 5 6 Λ z 4 4 Λ z 3 13 Λ z 18 Λ z 6 09.50.0.0006.01 3 z 18 K Λ z 4 z 3 7 Π 3 Λ z 1 Λ z Λ z 16 Λ z 8 8 Λ z 7 5 Λ z 6 8 Λ z 5 3 Λ z 4 98 Λ z 3 140 Λ z 9 Λ z 3 K Λ z 6 E Λ z Λ z Λ z 1 4 Λ z 6 11 Λ z 5 6 Λ z 4 4 Λ z 3 13 Λ z 18 Λ z 6 K Λ z 3 E Λ z Λ z Λ z 1 Λ z 1 Λ z Λ z 1 09.50.0.0007.01 4 z 51 K Λ z 5 6 Λ z Λ z 1 Λ z 1 z 4 7 Π 4 Λ z 1 Λ z Λ z Λ z 1 E Λ z 3 18 K Λ z Λ z Λ z 1 4 Λ z 6 11 Λ z 5 6 Λ z 4 4 Λ z 3 13 Λ z 18 Λ z 6 E Λ z 6 K Λ z Λ z 16 Λ z 8 8 Λ z 7 5 Λ z 6 8 Λ z 5 3 Λ z 4 98 Λ z 3 140 Λ z 9 Λ z 3 E Λ z K Λ z 3 3 Λ z 10 11 Λ z 9 13 Λ z 8 1 Λ z 7 36 Λ z 6 40 Λ z 5 1380 Λ z 4 340 Λ z 3 175 Λ z 1060 Λ z 1 09.50.0.0008.01 5 z 048 K Λ z 6 15 Λ z Λ z 1 Λ z 1 z 5 7 Π 5 Λ z 1 Λ z Λ z Λ z 1 E Λ z 4 60 K Λ z Λ z Λ z 1 4 Λ z 6 11 Λ z 5 6 Λ z 4 4 Λ z 3 13 Λ z 18 Λ z 6 E Λ z 3 30 K Λ z Λ z 16 Λ z 8 8 Λ z 7 5 Λ z 6 8 Λ z 5 3 Λ z 4 98 Λ z 3 140 Λ z 9 Λ z 3 E Λ z 10 K Λ z 3 3 Λ z 10 11 Λ z 9 13 Λ z 8 1 Λ z 7 36 Λ z 6 40 Λ z 5 1380 Λ z 4 340 Λ z 3 175 Λ z 1060 Λ z 1 E Λ z K Λ z 4 Λ z 64 Λ z 10 64 Λ z 9 0 Λ z 8 149 Λ z 7 131 Λ z 6 96 Λ z 5 3440 Λ z 4 6086 Λ z 3 5774 Λ z 835 Λ z 567 Operations Limit operation 09.50.5.0001.01 lim Ε Ε 0 Representations through equivalent functions With inverse function

http://functions.wolfram.com 7 09.50.7.0001.01 r s z ; r, s 5 r s 1 1 F 1 1, 1 1 ; 1 11 ; 1 Λ, 3 1 7 Λ 1 F 1 1, 7 1 ; 3 ; 1 Λ z 1 1 Re z 0 Λ z With related functions Involving Weierstrass functions Ω 3 Ω 1 09.50.7.000.01 g 3 g 3 7 g 3 ; g, g 3 g Ω 1, Ω 3, g 3 Ω 1, Ω 3 Im Ω 3 Ω 1 0 09.50.7.0003.01 g 3 ; g, g 3 g 1, z, g 3 1, z Im z 0 g 3 7 g 3 Involving theta functions 09.50.7.0004.01 ϑ 0, Π z 8 ϑ 3 0, Π z 8 ϑ 4 0, Π z 8 3 ; Im z 0 54 ϑ 0, Π z ϑ 3 0, Π z ϑ 4 0, Π z 8 Involving other related functions 09.50.7.0005.01 Η z 4 56 Η z 4 3 178 Η z 48 Η z 4 1 z 1 09.50.7.0006.01 178 56 Η z 16 Η z 16 09.50.7.0008.01 178 Η z 8 Η z 8 Η z 16 16 Η z 8 16 Η z Η z 8 09.50.7.0007.01 4 Λ z Λ z 1 3 7 Λ z 1 Λ z 09.50.7.0009.01 3 3 ; Im z 0 Η z 1 7 Η 3 z 1 Η z 1 43 Η 3 z 1 3 178 Η z 36 Η 3 z 1

http://functions.wolfram.com 8 09.50.7.0010.01 Η z 1 3 Η 3 z 1 3 Η z 1 7 Η 3 z 1 3 z 178 Η z 1 Η 3 z 36 09.50.7.0011.01 Η z 1 50 Η 5 z 6 Η z 6 315 Η 5 z 1 3 178 Η z 30 Η 5 z 6 09.50.7.001.01 Η z 1 10 Η 5 z 6 Η z 6 5 Η 5 z 1 3 5 z 178 Η z 6 Η 5 z 30 Zeros 09.50.30.0001.01 Π Π 0 ; z 3 z 3 Theorems Property of modular functions Every modular function m Τ (meaning a function that is invarant under all argument substitutions of the form z a z b c z d where a, b, c, and d are integers and a d b c 1) is a rational function of z. Transcendentality of Klein invariant for algebraic argument The value Α is transcendental for any algebraic Α where Im Α 0 and Α not being a quadratic irrational. Moonshine conecture The dimensions of the representations of the monster group (the largest simple sporadic group) of order 46 3 0 5 9 11 13 3 17 19 3 9 31 41 47 59 71 are simple combinations the Fourier coefficients of 178 z. Solution of Chazy equation The function w z 4 7 Τ Τ 6 Τ 1 Τ Τ Τ 1 Τ Τ is a solution of Chazy equation w z w z w z 3 w z. Replicability of 178 Τ 744 The function 178 Τ 744 is completely replicable: Σ Τ Π Σ 178 1 Π m Σ n Τ c n m ; 178 Τ 744 c n Π Τ. n 1 m 1 n 1

http://functions.wolfram.com 9 History R. Dedekind (1877) F. Klein (1878) R. Fricke (1890 189)

http://functions.wolfram.com 10 Copyright This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/notations/. Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example: http://functions.wolfram.com/constants/e/ To refer to a particular formula, cite functions.wolfram.com followed by the citation number. e.g.: http://functions.wolfram.com/01.03.03.0001.01 This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com. 001-008, Wolfram Research, Inc.