Numerical Integration. Newton Cotes Formulas. Quadrature. Newton Cotes Formulas. To approximate the integral b

Similar documents
NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

Lecture 14: Quadrature

Numerical Integration

Numerical Analysis: Trapezoidal and Simpson s Rule

ODE: Existence and Uniqueness of a Solution

B.Sc. in Mathematics (Ordinary)

Numerical Integration. 1 Introduction. 2 Midpoint Rule, Trapezoid Rule, Simpson Rule. AMSC/CMSC 460/466 T. von Petersdorff 1

3.4 Numerical integration

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature

Lecture 20: Numerical Integration III

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

Numerical Analysis. 10th ed. R L Burden, J D Faires, and A M Burden

Math 1B, lecture 4: Error bounds for numerical methods

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

Chapter 3 Solving Nonlinear Equations

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration.

Review of Calculus, cont d

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9

The Riemann Integral

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

Orthogonal Polynomials

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Lecture 12: Numerical Quadrature

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES

NUMERICAL INTEGRATION

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature

1 The Riemann Integral

Theoretical foundations of Gaussian quadrature

Trapezoidal Rule, n = 1, x 0 = a, x 1 = b, h = b a. f (x)dx = h 2 (f (x 0) + f (x 1 )) h3

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Sections 5.2: The Definite Integral

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ),

Lecture Note 4: Numerical differentiation and integration. Xiaoqun Zhang Shanghai Jiao Tong University

Math& 152 Section Integration by Parts

The Regulated and Riemann Integrals

Numerical integration

COT4501 Spring Homework VII

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

Definite integral. Mathematics FRDIS MENDELU

Integration Techniques

Main topics for the First Midterm

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

CAAM 453 NUMERICAL ANALYSIS I Examination There are four questions, plus a bonus. Do not look at them until you begin the exam.

Numerical quadrature based on interpolating functions: A MATLAB implementation

Construction of Gauss Quadrature Rules

Ordinary Differential Equations- Boundary Value Problem

1 The Lagrange interpolation formula

Chapter 6 Notes, Larson/Hostetler 3e

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

ODE: Existence and Uniqueness of a Solution

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Best Approximation. Chapter The General Case

How can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function?

APPROXIMATE INTEGRATION

MAT 772: Numerical Analysis. James V. Lambers

Overview of Calculus I

Section 6.1 Definite Integral

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

1 Techniques of Integration

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014

1 Probability Density Functions

Numerical Integration

Calculus of Variations

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

p(x) = 3x 3 + x n 3 k=0 so the right hand side of the equality we have to show is obtained for r = b 0, s = b 1 and 2n 3 b k x k, q 2n 3 (x) =

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

LECTURE 19. Numerical Integration. Z b. is generally thought of as representing the area under the graph of fèxè between the points x = a and

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Review of basic calculus

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

New Expansion and Infinite Series

Abstract inner product spaces

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

LECTURE. INTEGRATION AND ANTIDERIVATIVE.

Math Solutions to homework 1

Section 17.2 Line Integrals

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

1. On some properties of definite integrals. We prove

Line Integrals. Partitioning the Curve. Estimating the Mass

Orthogonal Polynomials and Least-Squares Approximations to Functions

Riemann Sums and Riemann Integrals

Polynomials and Division Theory

Topics Covered AP Calculus AB

Calculus II: Integrations and Series

Numerical Integration

Riemann Sums and Riemann Integrals

AP Calculus Multiple Choice: BC Edition Solutions

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Discrete Least-squares Approximations

Math 360: A primitive integral and elementary functions

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

Transcription:

Numericl Integrtion Newton Cotes Formuls Given function f : R R nd two rel numbers, b R, < b, we clculte (pproximtely) the integrl I(f,, b) = f (x) dx K. Frischmuth (IfM UR) Numerics for CSE 08/09 8 / 35 Newton Cotes Formuls To pproximte the integrl f (x)dx we choose n integer n N. Now we divide the intervl [, b] into n equl prts. For the step size h n nd the gridpoints x k we get h n := b nd n x k = + kh n with k = 0,..., n. The ide of the Newton Cotes Formuls consists in replcing the function f (x) by its Lngrnge interpoltion polynomil p n (x) n with p n (x) = f (x k )l k (x) nd l k (x) = k=0 n j=0 j k x x j x k x j through the gridpoints (, f ( )),..., (x n, f (x n )). K. Frischmuth (IfM UR) Numerics for CSE 08/09 8 / 35 Qudrture With f (x) = p n (x) r n (x) }{{} interpoltion error for the integrl it holds f (x)dx } {{ } I(f ) exct integrl = p n (x)dx } {{ } Q n (f ) pproximtion of I(f ) r n (x) dx. } {{ } R n (f ) integrtion error The qudrture formul of the integrl I(f ) n Q n (f ) = p n (x)dx = f (x k ) l k (x)dx k=0 }{{} q k R weights is weighted sum of the function vlues f (x k ). K. Frischmuth (IfM UR) Numerics for CSE 08/09 83 / 35 K. Frischmuth (IfM UR) Numerics for CSE 08/09 84 / 35

Degree Degree of exctness The Lgrnge interpoltion polynomil through the gridpoints (, f ( )), (x, f (x )) hs the form p (x) = f ( )l 0 (x) + f (x )l (x) p (x) = f ( ) x x x + f (x ) x x. The degree of exctness of n integrtion formul Q is the mximl integer r 0, for which holds I(p r (x)) = Q(p r (x)) for ll polynomils p r (x) of degree r. K. Frischmuth (IfM UR) Numerics for CSE 08/09 85 / 35 Midpoint rule The pproximtion of the integrl f (x)dx by the midpoint forumul ( ) + b Q 0 (f ) = (b )f is equivlent to constructing tngent line in ( ( )) + b + b, f nd computing the re under this tngent line ( ) ( ) ( + b + b t(x) = f + f x + b ). K. Frischmuth (IfM UR) Numerics for CSE 08/09 87 / 35 K. Frischmuth (IfM UR) Numerics for CSE 08/09 86 / 35 Estimte For the integrl of the tngent line on the intervl [, b] it holds: [ ( ) ( ) ( + b + b f + f x + b )] dx ( ) ( ) + b + b b ( = f dx + f x + b ) dx [ ( )] + b b ( ) [ + b x = f + f + b ] b x ( ) ( ) [ + b + b b = (b ) f + f + b ] (b ) ( ) ( ) [ + b + b + b = (b ) f + f (b ) + b ] }{{} 0 ( ) + b = (b )f := Q 0 (f ) K. Frischmuth (IfM UR) Numerics for CSE 08/09 88 / 35

Remrk Interpoltion polynomil of degree n= Let f (x) be convex, then Q 0 (f ) < I(f ) < Q (f ). (Q 0 (f ) ˆ= tngent trpezoidl rule) The Lgrnge interpoltion polynomil through the gridpoints (, f ( )), (x, f (x )), (x, f (x )) hs the form p (x) = f ( )l 0 (x) + f (x )l (x) + f (x )l (x). It holds h = b. K. Frischmuth (IfM UR) Numerics for CSE 08/09 89 / 35 Weights We get the weights q 0, q, q for the pproximtion of the interpoltion polynommil Q (f ) = f ( )q 0 + f (x )q + f (x )q by solving the three integrls q 0 = q = q = x l 0 (x)dx = x l (x)dx = x l (x)dx = x (x x )(x x ) ( x )( x ) dx = b = 6 3 h (x )(x x ) dx = 4b = 4 (x )(x x ) 6 3 h x x (x )(x x ) (x )(x x ) dx = b 6 = 3 h K. Frischmuth (IfM UR) Numerics for CSE 08/09 90 / 35 thus we get Q (f ) = b [ ] f ( ) + 4f (x ) + f (x ) 6 Q (f ) = h [ ] f ( ) + 4f (x ) + f (x ) Simpson s Rule 3 Alredy Kepler used this method in 65 to compute the volume of brrel: For the pproximtion of [ dx, V = π f (x)] he used the formul V π h ( ) r + 4rm + rb. 6 K. Frischmuth (IfM UR) Numerics for CSE 08/09 9 / 35 K. Frischmuth (IfM UR) Numerics for CSE 08/09 9 / 35

Error estimtes for Simpson s rule Newton Cotes Formuls of higher degree n the error of Simpson s rule cn be estimted by R (f ) = h5 90 f (4) (ζ) for ζ [, b] hence, we cn integrte polynomils of degree n = 3 exctly with h n = b n, x k = + kh n, xn l (x)dx nd q k = k n s = k=0 q k we get the following pproximtion of the integrl Q n (f ) = b n f (x k )q k s k=0 K. Frischmuth (IfM UR) Numerics for CSE 08/09 93 / 35 Error estimtes K. Frischmuth (IfM UR) Numerics for CSE 08/09 94 / 35 Wrning The following tble holds for the first four degrees: n q k s error,, 4, 6 3, 3, 3, 8 h 3 f (ζ) chord trpezoidl rule h 5 90 f (4) (ζ) Simson s Rule 3h3 5 80 f (4) (ζ) Simpson s Rule - don t use Newton Cotes Formuls of higher order, becuse some weights will become negtive, which will cuse cncelltion of significnt digits - in generl, the sequence Q n (f ), n =,, 3,..., does not converge to f (x)dx 4 7, 3,, 3, 7 90 8h 7 4 945 f (6) (ζ) Boole s Rule K. Frischmuth (IfM UR) Numerics for CSE 08/09 95 / 35 K. Frischmuth (IfM UR) Numerics for CSE 08/09 96 / 35

Multiple stripes Estimtes im bse methods conditions pproximtion of the determined b integrl I = I(f,, b) := f (x) dx trpezoidl rule, Simpson s rule trpezoidl rule: f twice continuously differentible Simpson s rule: f four times continuously differentible formuls h = (b )/n, x i = + i h, y i = f (x i ) for i = 0,,,... n ( y0 T n = T (f,, b, n) = h + y + + y n + y ) n S n = S(f,, b, n) = h 3 (y 0 + 4y + y + 4y 3 + + 4y n + y n ) error terms trpezoidl rule: I = T n + R T n, R T n = Simpson s rule: I = S n + R S n with R S n = (b )h f (ξ) (b )h4 f (iv) (ξ) 80 where ξ rbitrry intermedite point from (, b) (in generl different for R T n, respectively R S n ) (n even!) K. Frischmuth (IfM UR) Numerics for CSE 08/09 97 / 35 K. Frischmuth (IfM UR) Numerics for CSE 08/09 98 / 35 Algorithm (doubling) Trick Romberg multiple evlution of T n with doubling the number of strips T n = T n + h n f ( + i h) i= T i k = T i k + T i k T i k ( ) ni n i k+ h = b ; f() + f(b) T = h ; for k = : mx M = 0; for j = 0 : n M = M + f ( + (j + )h) ; end M = Mh; T = T + M ; h = h ; n = n; K. Frischmuth (IfM UR) Numerics for CSE 08/09 99 / 35 K. Frischmuth (IfM UR) Numerics for CSE 08/09 300 / 35

Exmple (doubling) Exmple (Romberg) Consider the definite integrl 4 0 + x. The nlytic solution is [4 rctn x] 0 = 4π 4 = π. Using the Trpezoidl Rules with intervl bisection we cn evlute the integrl: h M(x) T (x) 3.00000000 3.000000000 3.63594 3.00000000 4 3.4680050 3.376470 8 3.489473 3.38988495 6 3.49874 3.409464 3 3.4674034 3.449894 64 3.46300 3.455964 8 3.4597744 3.458483 56 3.459395 3.45904 5 3.459963 3.45909 K. Frischmuth (IfM UR) Numerics for CSE 08/09 30 / 35 Algorithm (Romberg) The evlution of the integrl (8x 7 6x 5 + 6x 3)dx yields to the exct solution 9.0. The evlution by Trpezoidl Rule followed by Romberg Method yields: 45.0000000 6.35000 44.7500000 36.0375976 7.79968 4.78499 7.433987 94.5386657 9.3559570 9.0000000 K. Frischmuth (IfM UR) Numerics for CSE 08/09 30 / 35 In order to sve memory we use vector insted of the mtrix A. (0) = (b ) for k = : mx n = n + n; h = b n ; f() + f(b) ; n=;. step: Applying the Trpezoidl Rule on the integrl T = 0; for j = : : n ; T = T + f( + jh); end T = h T;. step: Applying the Romberg Method (k) = (k ) + T ; for i = k : : 0 end (i) = (i + ) + (i + ) (i) 4 k ; Ordinry Differentil Equtions K. Frischmuth (IfM UR) Numerics for CSE 08/09 303 / 35

Ordinry Differentil Equtions Nottion Given function f : R R n R n, two rel numbers, x f R, < x f, nd vector y 0 R n, we solve (pproximtely) the Cuchy problem for x [, x f ]. Remrk y (x) = f (x, y(x)) with y( ) = y 0 For strters, we set n = nd spek of n ordinry differentil eqution. Otherwise, we cll it system of ODEs. We consider equtions of the type y (x) = f (x, y(x)). Often x cn be interpreted s time, then we write ẏ(t) = f (t, y(t)). Specil cses: ẏ = f (y) (utonomous eqution), or ẏ = f (t). The ltter cse is obvious: ll prime functions of f re solutions (indefinite integrl), they form the generl solution. To pick prticulr solution we need to prescribe the constnt of integrtion. This is usully done by ssigning n initil vlue. K. Frischmuth (IfM UR) Numerics for CSE 08/09 305 / 35 Initil vlue problems K. Frischmuth (IfM UR) Numerics for CSE 08/09 306 / 35 Existence nd uniqueness Theorem: (Picrd-Lindelof) If f fulfills Lipschitz condition The two equtions ẏ = f (t, y(t)), y(t 0 ) = y 0 together form n initil vlue or Cuchy problem. We hve t y(t) = y 0 + f (τ, y(τ))dτ. t 0 f (t, y ) f (t, y ) < L y y (t, y ), (t, y ) Dom(f ) with ny rel number L (the Lipschitz constnt), then there is unique solution with mximl domin to ech Cuchy problem with initil dt in the domin of f. This mximl solution reches the boundry of Dom(f ) the domin of f. For importnt specil cses nlyticl solutions cn be found. (e.g. seprble, projective, liner, Bernoulli, exct, nd logistic equtions... ) K. Frischmuth (IfM UR) Numerics for CSE 08/09 307 / 35 K. Frischmuth (IfM UR) Numerics for CSE 08/09 308 / 35

Numericl pproches Runge-Kutt methods The best known numericl procedures re the Runge-Kutt methods. Given y(x), we find n pproximtion to y(x + h) in the form ỹ(x + h) = y(x) + hd where h is the stepsize nd d is the men derivtive of the numericl solution on the intervl [x, x + h]. We clculte this vlue by tking the weighted men of vlues of the right-hnd side f (, ) of the ode y (x) = f (x, y). The trick is to choose suitble points nd weights in wy to get the smllest possible difference between the exct solution t x + h. There re mny pproprite choices, depending on ccurcy requirements nd the effort we re going to ccept. Other methods mke use of pst steps, interpoltion techniques re pplied (multistep methods). The generl form of the method is k = f (x, y) i k i = f (x + c i h, y + h i j k j ), i =... r r d = b j k j j= The simplest choice is known s Euler s (explicit) method, d = k = f (x, y) y(x + h) y(x) + hf (x, y(x)). j= K. Frischmuth (IfM UR) Numerics for CSE 08/09 309 / 35 Heun s method K. Frischmuth (IfM UR) Numerics for CSE 08/09 30 / 35 Fourth order RK method On cn show tht the bove method is very rough, nd the only wy to get better results is to reduce the stepsize h. In order to void excessive numbers of steps nd thus cut-off errors we increse the order of the method. A very simple improvement of Euler s method is Heun s method k = f (x, y) k = f (x + h, y + hk ) d = / k + / k The clssicl Runge-Kutt method is of order 4. In this cse, the coefficients re / / 0 0 c = / = 0 / 0 0 0 b = ( /6 /3 /3 /6 ) We will verify tht this method is lredy much better thn the originl one. K. Frischmuth (IfM UR) Numerics for CSE 08/09 3 / 35 K. Frischmuth (IfM UR) Numerics for CSE 08/09 3 / 35

Fifth order RK method The bove method gives the exct vlue of y(x + h) up to term proportionl to h 4. This cn be improved populr 5th order method is known s Dormnd Prince method, or simply dopri. ( It needs r = ) 7 stges. c = b 0. 0. 0.3 3/40 9/40 0.8 44/45 56/5 3/9 8/9.0 937 656 907 368 5360 87 355/33 64448 656 4673 547 /79 49/76.0 35/384 0.0 500/3 5/9 7 57600 0.0 7 6695 7 90 753 33900 503 8656 87 6784 /84 /55 /40 K. Frischmuth (IfM UR) Numerics for CSE 08/09 33 / 35 progrm DormndPrince(input, output); {Integrtion of y (x) = 4*Exp(0.8x) - 0.5y(x) by Dormnd-Prince-Method} vr x0, y0: double; {initil vlues} xf: double; {finl rgument} h: double; {step} eps: double; {ccurcy} x, y: double; uround: double; dy0, dy: double; y, hneu: double; nenner, fehler, fktor: double; fil, ccept: boolen; mxit, i, j: integer; b, c, k: rry[..7] of rel; : rry[..7,..7] of rel; K. Frischmuth (IfM UR) Numerics for CSE 08/09 33 / 35 function fxy(x, y: double): double; begin fxy := 4.0*Exp(0.8*x) - 0.5*y end; {fxy} procedure init; begin {initilize} x0:=0.0; y0:=.0; {set end of intervl of integrtion} xf:=0.0; {step size} h:=0.5; {Tolernce on locl cut off error} eps:=0.00000; uround :=.0E-6; while (+uround) > do uround := uround*0.; c[]:=0.0; c[]:=0.; c[3]:=3/0; c[4]:=0.8; c[5]:=8/9; c[6]:=.0; c[7]:=.0; b[]:=7/57600; b[]:=0.0; b[3]:=-7/6695; b[4]:=7/90; b[5]:=-753/33900; b[6]:=/55; b[7]:=-/40; [,]:=0.; [3,]:=3/40; [3,]:=9/40; [4,]:=44/45; [4,]:=-56/5; [4,3]:=3/9; [5,]:=937/656; [5,]:=-5360/87; [5,3]:=64448/656; [5,4]:=-/79; [6,]:=907/368; [6,]:=-355/33; [6,3]:=4673/547; [6,4]:=49/76; [6,5]:=-503/8656; [7,]:=35/384; [7,]:=0.0; [7,3]:=500/3; [7,4]:=5/9; [7,5]:=-87/6784; [7,6]:=/84; K. Frischmuth (IfM UR) Numerics for CSE 08/09 33 / 35 K. Frischmuth (IfM UR) Numerics for CSE 08/09 33 / 35

x := x0; y := y0; fil := flse; ccept:= true; mxit :=0; writeln( x end; {init} y ) procedure result; begin writeln( x::5,, y::5) end; {result} K. Frischmuth (IfM UR) Numerics for CSE 08/09 33 / 35 if (*uround/eps) > nenner then begin nenner := *uround/eps fehler := bs(h*dy/nenner); if 5.0 < (.*exp((/5)*ln(fehler/eps))) then begin fktor := 5.0 end else begin {if} fktor :=.*exp((/5)*ln(fehler/eps)) if.0 > fktor then begin fktor :=.0; hneu := h/fktor; if fehler < eps then begin y := y; x := x + h; result; if (not ccept) then begin if h < hneu then begin hneu := h end {if} K. Frischmuth (IfM UR) Numerics for CSE 08/09 33 / 35 begin {Dormnd-Prince} init; repet dy := 0.0; for j:= to 7 do begin dy0 := 0.0; for i:= to j- do begin dy0 := dy0 + [j,i]*k[i] end; {for} k[j] := fxy(x + c[j]*h, y + h*dy0); dy := dy + b[j]*k[j] end; {for} y := y + h*dy0; if.0e-5 > bs(y) then begin nenner :=.0E-5 end else begin {if} nenner := bs(y) if bs(y) > nenner then begin nenner := bs(y) K. Frischmuth (IfM UR) Numerics for CSE 08/09 33 / 35 ccept:=true; mxit :=0; end else begin {if} ccept := flse; mxit := mxit + ; fil := (mxit = 0) or (x + 0.*h = x) h := hneu; until (x > xf) or fil; end. {Dormnd-Prince} K. Frischmuth (IfM UR) Numerics for CSE 08/09 34 / 35

Stbility issues Multistep methods (explicit) All methods considered so fr were explicit methods. For certin so-clled stiff differentil equtions (nd systems), numericl solutions tend to oscillte, unless very smll step sizes re pplied. Implicit methods perform better t stiff problems. The most successful implicit methods re multistep methods. We introduce shortly the ide of multistep methods, first on the exmple of explicit schemes (Adm-Bshfort). Finlly, the implicit Adm-Moulton-Methods re presented. K. Frischmuth (IfM UR) Numerics for CSE 08/09 34 / 35 Multistep methods (implicit) The new pproximte vlue of y t x i+ = h(i + ) with h = const is clculted on the bsis of the right-hnd side f, evluted t the most recent n points (x j, y j ), j = i, i,... i n +. n = : n = 3 : y i+ = y i + h 3 y i+ = y i + h ( 3f (ti, y i ) f (t i, y i ) ) ( 3f (ti, y i ) 6f (t i, y i ) + 5f (t i, y i ) ) For the higher vlues of n, we give just the coefficients: h ( ) n = 4 : 55, 59, 37, 9 4 h ( ) n = 5 : 90, 774, 66, 74, 5 70 K. Frischmuth (IfM UR) Numerics for CSE 08/09 35 / 35 BDF-Methods Here we use lso the unknown point (x i+, y i+ ), i.e., we hve to solve n eqution for y i+, which is only implicitly determined. n = : y i+ = y i + h (5f (t i+, y i+ ) + 8f (t i, y i ) f (t i, y i )) n = 3 : y i+ = y i + h 4( 9f (ti+, y i+ ) + 9f (t i, y i ) 5f (ti, y i ) + f (t i, y i )) ide: interpolte lst m nodes nd the unknown next step fulfill ODE in new unknown node in order to interpolte, the Lgrngen bse polynomils re used to find the unknown vlue y i+, system of equtions hs to be solved in generl, some version of Newton s method hs to be pplied n = 4 : h ( ) 5, 646, 64, +06, 9 70 K. Frischmuth (IfM UR) Numerics for CSE 08/09 36 / 35 K. Frischmuth (IfM UR) Numerics for CSE 08/09 37 / 35

Generl Form for constnt stepsize Mtlb Code α i+ y i+ + α i y i + α i y i +... + α i+ m y i+ m = hf (x i+, y i+ ) The vlues of the α s re the following: m =, α i+ =, α i = m =, α i+ = 3/, α i =, α i = / m = 3, α i+ = /6, α i = 3, α i = 3/, α i = /3 m = 4, α i+ = 5/, α i = 4, α i = 3, α i = 4/3, α i 3 = /4 m = 5, α = (37/60, 5, 5, 0/3, 5/4, /5) m = 6, α = (47/60, 6, 5/, 0/3, 5/4, 6/5, /6) K. Frischmuth (IfM UR) Numerics for CSE 08/09 38 / 35 Exmple K. Frischmuth (IfM UR) Numerics for CSE 08/09 39 / 35 Dhlquist s Test y (t) = f (t, y(t)) = λ(y(t) ); y(0) = y 0 = ; y (t) = f (t, y(t)) = Ay(t); y(0) = y 0 ; A digonizble A method is clled A-stble if it works for ll problems with the spectrum of A in the left complex hlfplne. solution for λ = 00, h = /40 K. Frischmuth (IfM UR) Numerics for CSE 08/09 30 / 35 K. Frischmuth (IfM UR) Numerics for CSE 08/09 3 / 35