Rick Van Kooten, Indiana Univ., FNAL Users Meeting, HEPAP Session, June 27, 2000

Similar documents
råáp=== = = ======råáîéêëáíó=çñ=pìêêéó

High Gradient Tests of Dielectric Wakefield Accelerating Structures

Wakefield in Structures: GHz to THz

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL

74 ).20;51 /;),20)4 )+ /; $ #%!!&'`!'' MMM FF H= M F ) )0 4, ) / ) 1 -),+16) 24) ,7+-, ) 6-4) )+618

Eric R. Colby* SLAC National Accelerator Laboratory

EXPERIMENTAL STUDIES WITH SPATIAL GAUSSIAN-CUT LASER FOR THE LCLS PHOTOCATHODE GUN*

Wakefield Acceleration in Dielectric Structures

A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

Office of Science Perspective

FEL WG: Summary. SLAC National Accelerator Lab. Kwang-Je Kim (Part I, Mo-Tu) Joe Bisognano (Part II, Th) Future Light Source WS 2010: FEL WG

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

SCSS Prototype Accelerator -- Its outline and achieved beam performance --

Dielectric Accelerators at CLARA. G. Burt, Lancaster University On behalf of ASTeC, Lancaster U., Liverpool U., U. Manchester, and Oxford U.

Chapter 30 Design and Analysis of

Bunch Separation with Reconance Island Buckets

Survey of Advanced Dielectric Wakefield Accelerators

RF Gun Photo-Emission Model for Metal Cathodes Including Time Dependent Emission

X-band Experience at FEL

Traveling Wave Undulators for FELs and Synchrotron Radiation Sources

DIFFERENTIAL GEOMETRY HW 7

ASSESMENT OF OPPORTUNITY FOR A COLLINEAR WAKEFIELD ACCELERATOR FOR A MULTI BEAMLINE SOFT X-RAY FEL FACILITY

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

Parts Manual. EPIC II Critical Care Bed REF 2031

SLAC National Accelerator Laboratory. Persis S. Drell Director August 30, 2010

THE LCLS-II INJECTOR DESIGN*

Resistive wall wakefields of short bunches at cryogenic temperatures

The Free Electron Laser: Properties and Prospects 1

Beam Coupling to Optical Scale Accelerating Structures

Accelerators Beyond LHC and ILC

Wakefield Acceleration in Dielectric Structures

Coherent THz Pulses: Source and Science at the NSLS

Advanced Acceleration Concepts

THz Electron Gun Development. Emilio Nanni 3/30/2016

Generation and characterization of ultra-short electron and x-ray x pulses

Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

Diagnostics Needs for Energy Recovery Linacs

Synchrotron Radiation Sources and Free Electron Lasers. Josef Frisch

Transverse emittance measurements on an S-band photocathode rf electron gun * Abstract

X-Band RF Harmonic Compensation for Linear Bunch Compression in the LCLS

Status of linear collider designs:

Linac optimisation for the New Light Source

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

Femtosecond and sub-femtosecond x-ray pulses from a SASE-based free-electron laser. Abstract

Tuning Techniques And Operator Diagnostics for FACET at SLAC National Accelerator Laboratory. Chris Melton SLAC Accelerator Operations

Laser-driven undulator source

Active Medium Acceleration

Dielectric Based Accelerator: Subpicosecond Bunch Train Production and Tunable Energy Chirp Correction

Beam-plasma Physics Working Group Summary

THz experiments at the UCSB FELs and the THz Science and Technology Network.

LCLS Commissioning Status

Laser Wakefield Acceleration. Presented by Derek Schaeffer For Advanced Optics, Physics 545 Professor Sergio Mendes

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Simulations of Photonic Crystal and Dielectric Structures

X-ray Free-electron Lasers

Radiation Safety at LCLS: The Photon Beam s Maximum Capability and Material Damage Potential

Spawning Neutrons, Protons, Electrons and Photons from Universities to Society

Radio Frequency Photocathode Gun *

Reinventing the accelerator for the high-energy frontier

Superconducting RF Accelerators: Why all the interest?

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

Waseda University. Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity

CERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock

Flexible control of femtosecond pulse duration and separation using an emittance-spoiling foil in x-ray free-electron lasers

Femto-second FEL Generation with Very Low Charge at LCLS

LCLS-II Undulator Tolerance Budget*

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract

The infrared and THz user facility FELIX in Nijmegen

high luminosity searches at JLab: mixing, Compton, and beam dump OK Baker (for the LIPSS collaboracon) JLAB Workshop September 20, 2010

Emission-related Activities at PITZ Proposals for the DFG-Networking "Hi 2 PE"

Study on Bose-Einstein Condensation of Positronium

ANALYSIS OF HIGH ORDER MODES IN 1.3 GHZ CW SRF ELECTRON LINAC FOR A LIGHT SOURCE

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

Proposal to the University Consortium for Linear Collider

ACCELERATOR LAYOUT AND PHYSICS OF X-RAY FREE-ELECTRON LASERS

NVLAP Proficiency Test Round 14 Results. Rolf Bergman CORM 16 May 2016

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Laser Accelerators for High Energy Physics

Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL

Development of reliable and sophisticated photo injector system and future plan

LCLS Injector Prototyping at the GTF

EO single-shot temporal measurements of electron bunches

AREAL Test Facility for Advanced Accelerator and Radiation Sources Concepts

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ

FACET*, a springboard to the accelerator frontier of the future

Experimental Observation of Energy Modulation in Electron Beams Passing. Through Terahertz Dielectric Wakefield Structures

Wakefield induced Losses in the Manual Valves of the TESLA Cryomodule

The Broadband High Power THz User Facility at the Jefferson Lab - FEL

Design Study on. Quasi- Constant Gradient Accelerator Structure*

The Nature of Accelerating Modes in PBG Fibers

Overview of Energy Recovery Linacs

Transcription:

HEACC 2001 Eric Colby Stanford Linear Accelerator Center 2575 Sand Hill Road MS 07 Menlo Park, CA 94025 ecolby@slac.stanford.edu

9D=J FDOIE?I GKAIJE I JEL=JA JDA ANJ E A=H + E@AH Rick Van Kooten, Indiana Univ., FNAL Users Meeting, HEPAP Session, June 27, 2000

9D=J EI HAGKEHA@ B BKJKHA +I +A JAH B =II A AHCO # 6A8 4A=@E O ANJA IE> A J 6A8 # 6A8 K E IEJO!"? I A=H JAH 1?HA=IE C MEJD γ C JAH

2H CHAII E? EIE A AHCEAI D=I I MA@? IE@AH=> O E JDA =IJ @A?=@A Progress in accelerating gradient has slowed Beam quality demands have become steadily more stringent M. Tigner, Does Accelerator-Based Particle Physics Have a Future?, in Physics Today, January, 2001.

9D=J =HA JDA AO 1IIKAI B H ANJ /A AH=JE E A=H + E@AHI 1 FH LE C =??A AH=JE CH=@EA J,ALA FE C A A I KH?AI =J?DA@ J JDA =??A AH=J H JA?D EGKA KIA@,ALA FE C @E=C IJE?I B H LAHO ID HJ M?D=HCA M A EJJ=?A >A= I EJEC=JE C A EJJ=?A @E KJE BH M= ABEA @I IJ=JE? @O = E? EI= EC A JI,ALA FE C = HA? F=?J BE = B?KI

9D=J @ AI = # 6A8 )??A AH=J H E A M 6-5 ) #! /0 IKFAH? @K?JE C @EI?HAJA OIJH /H=@EA J # A8 " A8 A CJD N # N '" & E E?=LEJEAI 1 + # % H " /0 H =? @K?JE C @EI?HAJA OIJH /H=@EA J $# A8 &% A8 A CJD N # N!% ' % E E?=LEJEAI 8-22 " /0 H =? @K?JE C @EI?HAJA OIJH /H=@EA J A8 A CJD N! % E E?=LEJEAI + 1+! /0 JM >A= =??A AH=J H /H=@EA J # 8 A8 A CJD N! N #! E E?=LEJEAI

9D=J =HA JDA 5AHE KI,EBBE?K JEAI E EJE C )??A AH=JE C /H=@EA J,EHA?J 5E C A LI K JE?A IJHK?JKHA >HA= @ M JDHAID @I 5KHB=?A = @ A=H IKHB=?A =JAHE= FH FAHJEAI /A AJHO.EA @ A EIIE >HA= @ M F =I = AH IE 5KHB=?A? A= E AII IK>IKHB=?A F=HJE? AI CH=E > K @=HO E? KIE I =JAHE= OEA @ IJHA CJD >J=E E C DECD A AHCO @A IEJEAI 6H= IEA J IKHB=?A DA=JE C B IJHK?JKHAI 0ECD BHAGKA?O I KH?AI 5ALAHA M= ABEA @I 2 MAH I KH?A?=F=>E EJEAI

)@@A@? F E?=JE I B H E?H M=LA =??A AH=J HI 1 @EHA?J 2 MAH I KH?AI OIJH I >A= I D=LA E EJA@ =H AJI KJIE@A @ABA IA =LE=JE = @ =??A AH=J H FDOIE?I )??A AH=JE C IJHK?JKHAI =HA =@A >O = KB=?JKHE C JA?D EGKAI JD=J ANDE>EJ BAM A? EAI B I?= A 1J EI JDA ANJA IE B @AH JA?D CO 6DA JA?D CO EI J =JJH=?JE C >HECDJ O K C E @I

9D=J CH=@EA J EI F IIE> A E = H =? @K?JE C E?H M=LA?=LEJO 5 A DE JI BJDA = IMAH 5E C A +A 6AIJ 4AIK JI? FFAH =JIK J AJ = ''!!! /8 E IE C A & /0?=LEJO =KHA J AJ =!# /8 E 6 " /0?=LEJO 9KA I?D AJ = #! /8 E IE C A! /0?=LEJO K JE +A 6AIJ 4AIK JI? FFAH 0=E I AJ = ## % /8 =J % /0 MA AJ = $% /8 $?A I =J " /0 + 1+ ''' # /8 #?A I =J! /0 Factor-of-6 Discrepancy

0 M?= JDACH=@EA J>AE FH LA@ =JAHE= 5?EA?A 5KFAH? @K?JE C 4. CH=@EA JI D=LA E FH LA@ @H= =JE?= O LAH JDA =IJ @A?=@A @KA J HEC H KI /A AJHO 1 FKHEJO? JH 444 2H?AII? JH?DA EIJHO L=?KK BEHE C + A= E AII + + 6H=LA E C LI 5J= @E C M=LA IJHK?JKHAI

)?DEALE C 0ECDAH /H=@EA JI -BBE?EA J O 0ECDAH A AHCO @A IEJO E IJHK?JKHAI 0ECDAH B KA?A I KH?AI - J F λ 0ECDAH 3 IJHK?JKHAI AJ= E? HAI =J HI λ # *KJ DECDAH BHAGKA?EAI E F O HA IALAHA M= ABEA @ ABBA?JI λ J λ MAH >K?D?D=HCA 0ECDAH FK IA HAFAJEJE H=JAI B HAF λ J λ 0 BHAA IJHK?JKHAI 6ECDJAH = EC A J J AH=?AI HA AN JE? B=>HE?=JE = @ F IEJE E C ) I BE @E C =FFH FHE=JA F MAH I KH?AI EI J A=IO

-L= K=JE C 2 MAH 5 KH?AI *O -BBE?EA?O E?H M=LA 6K>AI @K =J HI % OIJH I $# 2K IA? FHAII HI &# =IAHI + 6E 5=FFDEHA,255 @ ;8 " " $ ;>.E>AH % 6A 5A =J µ WALL-PLUG TO PHOTONS NET: ~40% WALL-PLUG TO PHOTONS

2 MAH 5 KH?AI

= KB=?JKH=>E EJO 100 Å 1000 Å 1 µm 10 µm 100 µm 1 mm 1 cm 10 cm CONVENTIONAL MACHINING SINGLE POINT DIAMOND MACHINING/HIGH SPEED CNC MACHINING ELECTRO-DISCHARGE MACHINING LIGA/DEEP X-RAY LITHOGRAPHY SILICON MICROMACHINING 300 THz 30 THz 3 THz 0.3 THz 30 GHz 3 GHz LASERS TBAs FELs (Ubitrons) High Peak Power Amplifiers 0.8 µm, Ti:Sapphire Laser 1 khz 1 µm, Fiber Laser, 10 MW 10 µm CO 2, 1 GW, Laser 94 GHz, 10 MW, GK, 180 Hz 29.9 GHz, 1000 MW/m, TBA TUBES 17.1 GHz, 200 MW, K, 4 Hz 11.4 GHz, 75 MW, K, 120 Hz 5.7 GHz, 54 MW, K, 10 Hz 2.8 GHz, 65 MW, K, 120 Hz 1.3 GHz, 2000 MW, GMBK, 10 Hz

2K IA@ 0A=JE C X-band TE 011 Test Cavity showing removed end cap. (SLAC) Close up of end cap after T~120 K 55x10 6 pulses

+ KF E C A?D= EI I + FFAH = @ @EA A?JHE? E?H M=LA IJHK?JKHAI 2 =I = M= ABEA @ =??A AH=JE 8=?KK =IAH =??A AH=JE IJHK?JKHAI )?JELA IJHK?JKHAI

JDAH 5JHK?JKHAI X-band Photonic Band Gap Structure UCSD/SLAC W-band Zipper Structure (EDM) UCSD/SLAC W-band 108 Cell Constant Gradient Structure (LIGA), Argonne National Lab Adiabatically Stamped W-band RF Gun (half) SLAC W-Band Side-Coupled π/2 Structure (LIGA) T.U. Berlin

,EA A?JHE? 5JHK?JKHAI J. Power et al, Multimode Dielectric Wakefield Experiment, in Proc. AAC2000, Santa Fe, NM, (2000). Marshall, Fang, Hirshfield, Park, The Wake Field Resonator, in proc. AAC2000, Santa Fe, NM, (2000).