We then have an analogous theorem. Theorem 1.2.

Similar documents
LOOP GROUPS AND CATEGORIFIED GEOMETRY. Notes for talk at Streetfest. (joint work with John Baez, Alissa Crans and Urs Schreiber)

VERLINDE ALGEBRA LEE COHN. Contents

Equivariantly Twisted Cohomology Theories

Groupoid Representation Theory

THE TWISTED EQUIVARIANT CHERN CHARACTER

Topological K-theory, Lecture 3

1. Algebraic vector bundles. Affine Varieties

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

Chern Classes and the Chern Character

Bundle gerbes. Outline. Michael Murray. Principal Bundles, Gerbes and Stacks University of Adelaide

PICARD GROUPS OF MODULI PROBLEMS II

The Fundamental Gerbe of a Compact Lie Group

A classification of equivariant gerbe connections

Equivariant Algebraic K-Theory

On 2-Representations and 2-Vector Bundles

FILTERED RINGS AND MODULES. GRADINGS AND COMPLETIONS.

QUANTIZATION VIA DIFFERENTIAL OPERATORS ON STACKS

Math 210B. Profinite group cohomology

Representations and Linear Actions

EQUIVARIANT COHOMOLOGY. p : E B such that there exist a countable open covering {U i } i I of B and homeomorphisms

12. Projective modules The blanket assumptions about the base ring k, the k-algebra A, and A-modules enumerated at the start of 11 continue to hold.

The moduli stack of vector bundles on a curve

FUNDAMENTAL GROUPS OF TOPOLOGICAL STACKS WITH SLICE PROPERTY

Verlinde K-theory. by Daniel J. Kneezel

COHOMOLOGY OF ARITHMETIC GROUPS AND EISENSTEIN SERIES: AN INTRODUCTION, II

THE H-PRINCIPLE, LECTURE 14: HAEFLIGER S THEOREM CLASSIFYING FOLIATIONS ON OPEN MANIFOLDS

THE HITCHIN FIBRATION

Groupoids and Orbifold Cohomology, Part 2

Classification of definable groupoids and Zariski geometries

A QUICK NOTE ON ÉTALE STACKS

Formal Homotopy Quantum Field Theories and 2-groups.

An Introduction to the Stolz-Teichner Program

Math 210C. The representation ring

Twisted Equivariant Matter

Homotopy and geometric perspectives on string topology

ON COSTELLO S CONSTRUCTION OF THE WITTEN GENUS: L SPACES AND DG-MANIFOLDS

Gauge Theory and Mirror Symmetry

Lecture 6: Classifying spaces

Overview of Atiyah-Singer Index Theory

Homotopy types of algebraic varieties

A LOOPING DELOOPING ADJUNCTION FOR TOPOLOGICAL SPACES

The Structure of Compact Groups

OVERVIEW OF SPECTRA. Contents

arxiv: v1 [math.dg] 26 Jun 2015

Synopsis of material from EGA Chapter II, 4. Proposition (4.1.6). The canonical homomorphism ( ) is surjective [(3.2.4)].

h M (T ). The natural isomorphism η : M h M determines an element U = η 1

Derived intersections and the Hodge theorem

Higher Descent. 1. Descent for Sheaves. 2. Cosimplicial Groups. 3. Back to Sheaves. Amnon Yekutieli. 4. Higher Descent: Stacks. 5.

Cohomology jump loci of local systems

Differentiable Stacks, Gerbes, and Twisted K-Theory. Ping Xu, Pennsylvania State University

9. The Lie group Lie algebra correspondence

BEN KNUDSEN. Conf k (f) Conf k (Y )

SUMMER COURSE IN MOTIVIC HOMOTOPY THEORY

REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE: EXERCISES. Notation. 1. GL n

THE STEENROD ALGEBRA. The goal of these notes is to show how to use the Steenrod algebra and the Serre spectral sequence to calculate things.

Cohomology jump loci of quasi-projective varieties

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 25

We can choose generators of this k-algebra: s i H 0 (X, L r i. H 0 (X, L mr )

LECTURE 11: SOERGEL BIMODULES

NOTES ON FIBER BUNDLES

121B: ALGEBRAIC TOPOLOGY. Contents. 6. Poincaré Duality

CHARACTER SHEAVES ON UNIPOTENT GROUPS IN CHARACTERISTIC p > 0. Mitya Boyarchenko Vladimir Drinfeld. University of Chicago

Lie 2-algebras and Higher Gauge Theory. Danny Stevenson Department of Mathematics University of California, Riverside

A GLIMPSE OF ALGEBRAIC K-THEORY: Eric M. Friedlander

SECTION 2: THE COMPACT-OPEN TOPOLOGY AND LOOP SPACES

Lecture on Equivariant Cohomology

ALGEBRAIC K-THEORY HANDOUT 5: K 0 OF SCHEMES, THE LOCALIZATION SEQUENCE FOR G 0.

The Hecke category (part II Satake equivalence)

Algebraic Cobordism Lecture 1: Complex cobordism and algebraic cobordism

Kähler manifolds and variations of Hodge structures

A bundle-theoretic perspective to Kac Moody groups

Patrick Iglesias-Zemmour

1. Classifying Spaces. Classifying Spaces

Thus we get. ρj. Nρj i = δ D(i),j.

LECTURE 3: RELATIVE SINGULAR HOMOLOGY

NOTES ON THE CONSTRUCTION OF THE MODULI SPACE OF CURVES

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

AHAHA: Preliminary results on p-adic groups and their representations.

The Based Loop Group of SU(2) Lisa Jeffrey. Department of Mathematics University of Toronto. Joint work with Megumi Harada and Paul Selick

Lecture 17: Invertible Topological Quantum Field Theories

-Chern-Simons functionals

Introduction to derived algebraic geometry

Geometric Realizations of the Basic Representation of ĝl r

WZW terms in a cohesive -topos

1.1 Definition of group cohomology

THE SHIMURA-TANIYAMA FORMULA AND p-divisible GROUPS

Math 754 Chapter III: Fiber bundles. Classifying spaces. Applications

RTG Mini-Course Perspectives in Geometry Series

Commutative algebra and representations of finite groups

Cover Page. Author: Yan, Qijun Title: Adapted deformations and the Ekedahl-Oort stratifications of Shimura varieties Date:

Topological K-theory

Operads. Spencer Liang. March 10, 2015

Lecture 19: Equivariant cohomology I

APPENDIX C. Groupoids

DESCENT THEORY (JOE RABINOFF S EXPOSITION)

POSTNIKOV EXTENSIONS OF RING SPECTRA

Fusion systems and self equivalences of p-completed classifying spaces of finite groups of Lie type

A partition of the set of enhanced Langlands parameters of a reductive p-adic group

Derived Morita theory and Hochschild Homology and Cohomology of DG Categories

Lemma 1.3. The element [X, X] is nonzero.

Transcription:

1. K-Theory of Topological Stacks, Ryan Grady, Notre Dame Throughout, G is sufficiently nice: simple, maybe π 1 is free, or perhaps it s even simply connected. Anyway, there are some assumptions lurking. The reference for the following is [?] and [?]. As motivation, consider the following black-box theorem: Theorem 1.1. k R(LG) = k+n KG dim G (G) = k+n K(G//G) = k+n K(A/LG) where A is some space of connections (with values in g) on the trivial principle bundle over S 1, and LG acts by gauge transformations. Now we would like to consider S 1 acting by loop rotations (i.e. lifting the action on the base to the bundle) and denote the resulting groupoid by We then have an analogous theorem. Theorem 1.2. A/S 1 LG. τ σ R(S 1 LG) = τ K dim G (A/S 1 LG) The groupoid A/S 1 LG is an example of a local (but not global) quotient groupoid and hence we need to develop the K-theory of such objects. 1.1. Topological Groupoids. Definition 1.3. A topological groupoid is a pair of spaces (X 0, X 1 ) with source and target morphisms, s, t : X 1 X 0, and identity section X 0 X 1, an inverse inv : X 1 X 1 and a composition, c : X 1 X0 X 1 X 1. Examples 1.4. If X is a G-space, X G X is a topological groupoid, denoted X//G. If X is a space and U = {U i } is a cover, then define a topolgical groupoid N U whose objects are pairs (U i, x i ), x i U i and a morphism from (U i, x i ) to (U j, x j ) is an ω in U i X U j such that π i (ω) = x i and π j (ω) = x j. Note that to each groupoid we can associate a simplicial space X where X n = X 1 X0 X0 X 1 is the space of n-tuples of composable morphisms. Definition 1.5. Let X, Y be topological groupoids. Then F : X Y is an equivalence if it is essentially surjective and fully faithful. F is a local equivalence if F is an equivalence and for each y Y 0 there is a neighborhood U as in the figure below. Remark 1.6. This notion of equivalence is not an equivalence relation. We end up with weird correspondence diagrams to make things work, which is reminiscent of some homotopy category stuff. 1

Diagram in definition of local equivalence, Ryan's talk, line 1491 2 Figure 1. A local equivalence. Diagram for example of SU(2), in Harold's talk after line 1798. (You have SU(2), I wrote SL(2) I'm not sure which is right). The local equivalence basically enforces some notion of local lifting, which we don t get for equivalences because essentially surjective does not imply surjective. A groupoid defines a sheaf of groupoids on the site of spaces and local equivalences correspond to isomorphisms of sheaves. Examples 1.7. (1) For a refinement of covers, U V, there is a local equivalence N U N V. (2) G P X a principle bundle, then P//G X X is a local equivalence. (3) For a subgroup H < G, we have a local equivalence P//H G/H//G Definition 1.8. A global quotient qroupoid is one that is related via a zig-zag of local equivalences to a groupoid of the form X//G for X Hausdorff and G a compact Lie group. A local quotient groupoid is one who admits a cover by open groupoids that are global quotients. 1.2. Bundles over groupoids. Before defining bundles and extensions of groupoids let us fix some notation. Let X = (X 0, X 1 ) be a groupoid and suppose we have a bundle P X 1. We will denote by P fi the pull back of P along the map X n X 1 given by f 1 f 2 f n f i (x 0 x1 xn ) (x i 1 xi ). Similarly, if (a f b) X 1 and Q X 0 is a bundle, then we have the pullbacks Q a and Q b on X 1. Definition 1.9. For X 1 X0 a groupoid, a fiber bundle is a fiber bundle P X 0 together with a bundle isomorphism t f : P a P b for f : a b X 1

such that t Id = Id and satisfying a cocycle condition, so that 3 commutes on X 2. t f P a P b t g f P c t g For p : P X a fiber bundle write Γ(P ) for the space of sections topologized as a subspace of Γ(P ) = Γ(X, P ) = {s : X P p s = Id X } X P 0 0 X P 1 1. Bundles behave well with respect to pull back and descent, so we have the following. Proposition 1.10. Let F : X Y be a local equivalence and P Y be a fiber bundle. Then there is a homeomorphism, The pullback functor Γ(X, F P ) = Γ(Y, P ). F : {Fiber bundles over Y } {Fiber bundles over X} is an equivalence of categories. Later we will realize the K-theory of a groupoid as the space of sections of a certain bundle of Hilbert spaces over the groupoid. 1.3. Central extensions. To incorporate twists into K-theory we will need to use central extensions of groupoids. Definition 1.11. A U(1) central extension of X = (X 0, X 1 ) is a U(1)-bundle L over X 1, together with an isomorphism of U(1)-bundles on X 2 λ g,f : L g L f L g f such that the following diagram of U(1)-bundles commutes on X 3 (L h L g ) L f L h (L g L f ) L h g L f L h L g f L h g f If L X 1 is a central extension of X, then the pair X = (X 0, L) is a groupoid over X and the functor X X represents X as a central extension of X in the obvious way. This perspective will be useful when we discuss twisted K-theory. Examples 1.12.

4 For X = //G, a central extension is just a central extension of G by U(1). It is a fact that (up to isomorphism) U(1)-bundle gerbes over X are in bijection with central extensions of X. Also, to a P(H)-bundle there is an associated U(1)-gerbe called the lifting gerbe. As an example, we define M T. Consider S 1 S 1 S 1 S 1 given by (z 1, z 2 ) (z 1 z 2, z 2 ). Then we take the mapping torus for B(S 1 S 1 ): CP = BS 1 BS 1 BS 1 [0, 1]/ p 2 p 3 BS 1 S 1 DD K(Z, 3) where DD classifies the Dixmier-Douady class (this class is the obstruction to lifting to a Hilbert bundle). Here, DD(M T ) is not torsion. Definition 1.13. Let X be a local quotient groupoid, then a twist is a pair (P, L) where P X is a local equivalence and L is a central extension of P. Proposition 1.14. If (P, L) is a twist of a local quotient groupoid, then the groupoid P = (P 0, L) is a local quotient groupoid. Remark 1.15. We should really incorporate a Z/2 grading into everything above, but for clarity we ve neglected this. Further, the twists of a local quotient groupoid X form a monoidal category; we will not expand on this aspect in these notes. Examples 1.16. Let X be a space and P X a principal G-bundle. Further, let G G be a central extension, then (P// G, P//G) is a twisting of X. Suppose that G is a connected, compact Lie group, then we have the path-loop fibration ΩG P G G, so we can regard P G as a principal bundle over G. Note that G acts on all spaces by conjugation. Let LG be the free loop space, then via the evaluation (at 1) map LG G we have the semidirect product decomposition LG = ΩG G. The group LG acts on the fibration above by conjugation and the action of LG on G factors through the action of G on itself by conjugation through the evaluation map LG G. As a result we have a local equivalence of groupoids P G//LG G//G. Hence, a central extension LG LG defines a twisting of G//G. 2. Hilbert Bundles and K-theory Using the language of Hilbert bundles we define twisted K-theory for local quotient groupoids.

Definition 2.1. A Hilbert bundle H on X is a fiber bundle with fiber a Z/2- graded separable Hilbert space. H is universal if it contains any other Hilbert bundle as a summand. H is locally universal if for all open subgroupoids X U X, H XU is universal. Proposition 2.2. Suppose X is a global quotient, X = S//G, then H = S L 2 (G) Cl 1 l 2 is locally universal. If Y is a local quotient groupoid, then there exists a locally universal Hilbert bundle H. The bundles above are unique up to contractible choices. Notice that on a space, Hilbert bundles are always trivial so that these notions are only interesting if points have automorphisms. Using the language of the above proposition we obtain an interesting characterization of local quotient groupoids. Proposition 2.3. A local quotient groupoid is a global quotient groupoid if and only if its universal Hilbert bundle splits as a finite sum of finite dimensional bundles. Corollary 2.4. Any gerbe with non-torsion DD-class is not a global quotient. In particular, M T is not a global quotient. Also, A/S 1 LG is not a global quotient groupoid as it fibers over M T, but it is a local quotient groupoid. 2.1. K-Theory. Let X be a local quotient groupoid, H its locally universal Hilbert bundle. Then define F red (0) (H) = {A F red(h) A 2 + I is compact}. This does half the job, namely this gives us even K-theory. Now we need to get odd K-theory. So let A F red(cl n H) for n odd. Let ω(a) := ɛ 1 ɛ n A n = 1 mod 4 ω(a) := i 1 ɛ 1 ɛ n A n = 1 mod 4, where the ɛ i are generators for the Clifford algebra. Then define F red (n) (H) F red (0) (Cl n H) as odd operators that commute with Cl n and such that ω(a) has positive and negative essential spectrum. Now define k(x) n = Γ(X, F red (0) (H)) n even and k(x) n = Γ(X, F red (1) (H)) K n (X) = π 0 (k(x) n ). n odd Theorem 2.5. K is functorial, and local equivalent groupoids give isomorphic K-theories. We have a MV sequence for open subgroupoids and shriek maps for K-oriented maps. 5

6 If we apply K to a space, then we recover the K-theory of the space. Similarly, K (X G) is the G-equivariant K-theory of X. Now, what about the twists? Recall that a twist τ = (P, L) of a local quotient groupoid X defines a local quotient groupoid P with an action of a central U(1) on its universal Hilbert bundle. So we define τ K(X) := [K( τ X)] deg 1 where the degree 1 is with respect to the action of the central U(1) on the universal Hilbert bundle. 2.2. The Kac numerator. Recall our motivating theorem. Theorem 2.6. From e G we get a shriek map τ σ R(S 1 LG) = τ K(A/S 1 LG) ind : τ σ R(S 1 G) τ K(A/S 1 G) and by dualizing with respect to the R(S 1 )-module structure we have ind : τ K(A/S 1 LG) Hom Z ( τ σ R(G); R(S 1 )) Let H be an irreducible representation of S 1 LG. Then ind [H] = µ ɛ(u)q µ 2 /2 T r(g)v ρ µ where the right hand side is the Kac numerator and µ ranges over the Weyl orbit of λ + ρ where λ is the lowest weight of H, ρ = (0, 1 2 α>0 α, 0) is a particular weight and V µ are representations of G such that µ α is not a weight for all roots α. For q = 1 we can interpret the above formal character as a delocalized Chern character. See [?] for further discussion. References [1] D.S. Freed, M.J. Hopkins, C. Teleman, Loop groups and twisted K-theory I, arxiv: math.at/0711.1906. [2] D.S. Freed, M.J. Hopkins, C. Teleman, Twisted K-theory and loop group representations, arxiv: math.at/0312155.