RECURSIVE FORMULATION FOR MULTIBODY DYNAMICS

Similar documents
Manipulator Dynamics. Amirkabir University of Technology Computer Engineering & Information Technology Department

ON THE MOTION OF PLANAR BARS SYSTEMS WITH CLEARANCES IN JOINTS

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Physics 114 Exam 2 Fall Name:

Ahmed Elgamal. MDOF Systems & Modal Analysis

Algorithms Theory, Solution for Assignment 2

Module 1 : The equation of continuity. Lecture 5: Conservation of Mass for each species. & Fick s Law

C.11 Bang-bang Control

Rademacher Complexity. Examples

A Method for Determining the Number of Dependent Constraints Using Transformation Parameters of Coordinate Systems Korganbay Sholanov1, a*

MOLECULAR VIBRATIONS

Carbonyl Groups. University of Chemical Technology, Beijing , PR China;

PHYS Look over. examples 2, 3, 4, 6, 7, 8,9, 10 and 11. How To Make Physics Pay PHYS Look over. Examples: 1, 4, 5, 6, 7, 8, 9, 10,

Hamilton s principle for non-holonomic systems

Third handout: On the Gini Index

Decomposition of Hadamard Matrices

L5 Polynomial / Spline Curves

Transforms that are commonly used are separable

Lecture 07: Poles and Zeros

Journal of Mathematical Analysis and Applications

( q Modal Analysis. Eigenvectors = Mode Shapes? Eigenproblem (cont) = x x 2 u 2. u 1. x 1 (4.55) vector and M and K are matrices.

( ) Two-Dimensional Experimental Kinematics. Notes_05_02 1 of 9. Digitize locations of landmarks { r } Pk

LINEARLY CONSTRAINED MINIMIZATION BY USING NEWTON S METHOD

7.0 Equality Contraints: Lagrange Multipliers

Chapter 9 Jordan Block Matrices

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

A unified matrix representation for degree reduction of Bézier curves

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

CH E 374 Computational Methods in Engineering Fall 2007

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

ESS Line Fitting

Long blade vibration model for turbine-generator shafts torsional vibration analysis

Engineering Vibration 1. Introduction

The conformations of linear polymers

General Method for Calculating Chemical Equilibrium Composition

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

4 Inner Product Spaces

Kinematics. Redundancy. Task Redundancy. Operational Coordinates. Generalized Coordinates. m task. Manipulator. Operational point

MA/CSSE 473 Day 27. Dynamic programming

DYNAMICS. Systems of Particles VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy

DEMONSTRATION AND METHOD FOR CALCULATING THE EFFICIENCY OF DIFFERENTIAL MECHANISM

h-analogue of Fibonacci Numbers

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

8.1 Hashing Algorithms

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

Some Different Perspectives on Linear Least Squares

A tighter lower bound on the circuit size of the hardest Boolean functions

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne.

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

On the Boundedness Property of the Inertia Matrix and Skew-Symmetric Property of the Coriolis Matrix for Vehicle-Manipulator Systems

We have already referred to a certain reaction, which takes place at high temperature after rich combustion.

PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION

1 Onto functions and bijections Applications to Counting

Harley Flanders Differential Forms with Applications to the Physical Sciences. Dover, 1989 (1962) Contents FOREWORD

The Mathematical Appendix

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

Comparison of Analytical and Numerical Results in Modal Analysis of Multispan Continuous Beams with LS-DYNA

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y.

Motion Estimation Based on Unit Quaternion Decomposition of the Rotation Matrix

Newton s Power Flow algorithm

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Quantization in Dynamic Smarandache Multi-Space

HOOKE'S LAW. THE RATE OR SPRING CONSTANT k.

Centroids Method of Composite Areas

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

MA 524 Homework 6 Solutions

PTAS for Bin-Packing

Dynamic Analysis of Axially Beam on Visco - Elastic Foundation with Elastic Supports under Moving Load

The hypersingular boundary element method revisited

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction

QR Factorization and Singular Value Decomposition COS 323

Department of Agricultural Economics. PhD Qualifier Examination. August 2011

Analysis of Lagrange Interpolation Formula

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

Beam Warming Second-Order Upwind Method

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Generalized Linear Regression with Regularization

Numerical Analysis Formulae Booklet

Multivariate Transformation of Variables and Maximum Likelihood Estimation

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions:

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers.

Unit 9. The Tangent Bundle

2C09 Design for seismic and climate changes

Functions of Random Variables

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

A NEW FINITE ELEMENT CONSIDERING SHEAR LAG

Simple Linear Regression

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation?

Applying the condition for equilibrium to this equilibrium, we get (1) n i i =, r G and 5 i

Simulation Output Analysis

Chapter 11 Systematic Sampling

Transcription:

ultbody Dyamcs Lecture Uversty of okyo, Japa Dec. 8, 25 RECURSIVE FORULAION FOR ULIODY DYNAICS Lecturer: Sug-Soo m Professor, Dept. of echatrocs Egeerg, orea Vstg Professor, Ceter for Collaboratve Research Uversty of okyo sookm@cu.ac.kr el: 3-5452-653

Cotets ematcs of a rgd body Dyamcs of a rgd body ultbody Dyamcs - Cartesa Coordate Formulato - Relatve Jot Coordate Formulato Recursve ematc relatoshp Recursve formulato I for S Recursve formulato II for S Subsystem sythess method 2

ULIODY DYNAICS 3

Defto of ultbody Systems ad S dyamcs formulatos Defto of S: ultbody systems cosst of collectos of bodes that are costraed to move relatve to oe aother by kematc coectos (Jots betwee bodes. here are two coordate systems maly used for multbody dyamcs formulatos. Oe s Cartesa Coordate formulato ad the other s relatve ot coordate formulato. Cartesa coordate Relatve Jot coordate 4

Cartesa coordates formulato I each body, posto ad oretato coordates are assged to descrbe the moto of a multbody system, thus we may choose Cartesa posto ad Euler parameter oretato coordates. I the formulato, we wll use xed ketc-kematc equatos. z r ody z x s y s x ody z y q r,,,, b p 7 r y x he composte vector of Cartesa geeralzed coordates for the multbody system s b 7 b q q, q, q ( + 5

Costrat Equatos for ematc Coectos (Jots ematc coecto betwee two bodes must be modeled usg assged Cartesa coordate system Sphercal costrat: S Φ ( P, P r + A s - r - A s Dot costrat: d Φ (a,a a a Φ d (a,a a A A a Dot 2 costrat: d2 Φ (a,d a d 6

Costrat Equatos for ematc Coectos (Jots Example: Costrat Equatos for Revolute ots S Φ ( P, P d Φ (h,f d Φ (h,g Pot P the body ad Pot P the body must be cocde durg the moto. Z axs of ot referece frame ad Z axs of ot referece frame must be parallel. 7

Costrat Equatos for ematc Coectos (Jots Computg Jacoba matrx for costrat equatos S δφ ( P, P δr δ δ δ As π r + As π δφ d (a,a a A A a δπ a A A a δπ Costrat velocty equatos Φ Φ r +Φ ω +Φ r +Φ ω r π r π Costrat accelerato equatos Φ Φ r +Φ ω +Φ r +Φ ω r π r π (Φ r +Φ r +Φ ω +Φ ω γ r r π π 8

Force Elemet betwee wo bodes Example: Sprg Damper ad Actuator Forces f k( l l + cl + F( l, l d r + A s - r - A s l d d 2 l d ( (r + A s - r - A s l d ( (r + - Asω - r Asω l hus, the magtude of the force the sprg-damper-actuator, wth teso take as postve s Vrtual work of ths force s δ A W f δl 9

Force Elemet betwee wo bodes he varatoal relatoshp betwee vrtual legth ad varato of Cartesa coordates s d δl ( ( δr δ + - Asω - r Asω l A f δ W d δ δ + ( r - Asω - r Asω l f d f d [ δr, δπ ]{ } + [ δr, δπ ]{- } l s l A d s A d δ Z Q + δ Z Q A A hus, geeralzed force due to sprg-damper-actuator are f d f d A A Q, Q - l s l A d s A d

Equatos of moto of costraed spatal systems Revew a sgle rgd body equatos of moto varatoal form where m r F [δ r,δ π ] Jc ω c ω Jω c δz Y - Q ( δr r m F δ Z,,, δ Y Q π ω Jc c ω Jω c For multbody system cosst of + bodes, varatoal form of equatos moto ca be obtaed by addg vrtual work form of each body equatos of moto as ( + ( + + ( δz Y - Q δz Y - Q... δz Y - Q δz where (,, must be cosstet wth costrat,.e., kematcally admssble vrtual dsplacemet vectors, so must be satsfy wth followg equatos δφ Φz δ Z + Φz δ Z +... + Φz δ Z

Equatos of moto of costraed spatal systems y the Lagrage ultpler heorem, there are Lagrage multplers, such that δz δz Y - Q Φ λ δz Y - Q Φ λ ( ( Z Z + + + +... + δz Y - Q + Φ λ ( Z For (,, beg arbtrary. hus, by the orthogoalty theorem, S equatos of moto are obtaed as; Y - Q Φ λ + Z Y - Q Φ λ... Y - Q + Φ λ + Z Above equatos of moto have more ukows tha o. of equatos, thus costrat accelerato equatos must be augmeted. Z 2

Equatos of moto of costraed spatal systems Y - Q Φ λ + Z Y - Q Φ λ... Y - Q + Φ λ + Z Φ Φ Y + Φ Y +... + Φ Y γ z z z Φ Y + Φ Y +... + Φ Y z z z Z Φ Z Y Q ΦZ λ γ where Y [ Y, Y,..., Y ] Q [ Q, Q,..., Q ] Φ [ Φ, Φ,... Φ ] z z z z... Sce erta matrx s costat due to usg local vector of agular velocty, effectve soluto method for Augmeted atrx could be as follows; λ Φ Φ Φ Q ( ( Z Z ( Z γ Y Q ΦZλ 3

RECURSIVE INEAIC RELAIONSHIP 4

RECURSIVE INEAICS Oretato relatoshp C A A C A " ( q s the orthogoal trasformato matrx " " " from the x y z frame to the frame. " A x y z s the orthogoal trasformato matrx from the x y z frame to the x y z frame. " " " Posto relatoshp r r + s + d r + A s + A C d " ( q Fg. A par of coected bodes 5

RECURSIVE INEAICS Agular velocty relatoshp ω ω + ω ω + H ( A,q q ω s the relatve agular velocty of the body wth respect to the body, ad s also fucto of ot q relatve coordate ad ot relatve velocty. Velocty relatoshp d r r +ω (r - r + d r + rω r + rω + ( + r H q q q q q H s the ut vector of the ot rotatoal axs. d r r + s + d r + ω s + (ACd (q dt d d r + ω s + ω d + q r + ω ( s + d + q q q d r + rω r + + rω rh + q ω ω H q 6

RECURSIVE INEAICS Velocty State vector Represetato r + rω r + + rω rh + q ω ω H r + rω ω Y ω Y r + rω the velocty state vectors of bodes ad, respectvely d d + r H q H q I order to have more compact form of the equatos, the composte state vector otato ca be employed Y Y + velocty trasformato matrx from the ot space to the state vector space q Vrtual dsplacemet State vector Represetato δ Z δ Z + δq 7

RECURSIVE INEAICS Cartesa Velocty ad Velocty State vector Relatoshp where Y Accelerato state vector represetato Y Y Y + + q q + + D Accelerato state vector ad the Cartesa accelerato vector relatoshp Y I r I Y r ω Y Y + Y Y R δ Z q δ Z Z δπ δ δ r + r δπ δ Z δr δπ 8

RECURSIVE INEAICS SUARY A A C A " Posto & Oretato A r " r r A C A + s + A s Velocty Relatoshp Y Y + + d + A C q d ( q Forward kematcs q q - - - 2 Accelerato Relatoshp Y Y Y + + q q + + D q q 9

RECURSIVE DYNAICS 2

NON CENROIDAL EO FOR A RIGID ODY δ r { mr + m ω ( F d } + δπ (m r+ Jω +ωjω rw m mrw ( r F d [δ r,δ π ] m rw J ω ω Jω rw ω A ωa ρ c A ρca δπ δπ A A(ω +ωω(ω +ωωa J A JA m mrw ( r F d [δ r,δ π ] mrw J ω ωjω where m m ρ, d mωωρ rw c c 2

SAE VECOR FOR OF EQ FOR A RIGID ODY m m ρ ( m r F ωωρ c c [δ r,δ π ] m ρ c J ω ωjω ( δz Y - Q δ Z δ Z δr m m ρ r ( F mωωρ δ Z, δ,, π m Y Q ρ c J ω ωjω c c Y Y + Y Y R ( δz Y Q I r I c m I m r c c c c c m r J m r r c c f + m rω Q (Q + R Qc c c c c c c + r f + m r rω ω Jω Proof s gve U. of Iowa Ph.D hess, F.sa, Automated ethods for Hgh Speed Smulato of ultbody Dyamc Systems, 989 22

RECURSIVE FORULAION FOR OPEN LOOP SYSES + body ope cha system equatos of moto vrtual work form wth state vector otato δz ( Y Q 23

RECURSIVE FORULAION I 24

Recursve I Formulato (reducto procedure -2-2 δz ( Y Q +δz ( Y Q +δz ( Y Q - - - - δ Z δ Z + δq [ + δz ( Y Q +δz ( Y Q ( Y Q ] +δq ( Y Q - - - - -2 δz ( Y Q Y Y + q + D +δz [ - (-Y- Q - + (Y + q (Q D ] ( +δq Y + q (Q D - Sce δqs arbtrary, coeffcet of δq must be zero. { Y + q (Q D } Solve for q - - q -( { Y (Q D } - Substtutg expresso q to the remag vrtual work form equatos of moto yelds 25

Recursve I Formulato (reducto procedure where 3 - δz ( Y - Q +δz ( Y - Q +δz ( Y - L -2-2 -2-2 - - - - - - - ( - - L - (Q - D - ( (Q - D - - + - L Q + L - - - δz ( Y - L Q L If we apply ths procedure cotually from body - to, the we wll get the base body equatos of moto ad backward recurrece formula as follows; If the base body s ot costraed, the δz s arbtrary We have Y L atrx sze of s always 6x6 26

Recursve I Formulato (reducto procedure ackward Recurrece formula for body L Q for body - - - ( for body,,, L - L - D - - ( (L - D fo r b o d y,,, - - + - for body,, L Q + L for body,, - - - Jot accelerato for ot - q ( - { Y (L D } - 27

Recursve algorthm I Step : Gve ot coordates, compute posto ad oretato alog the forward path from body to body A " r r + s + d r + A s + A C d ( q Step 2: Gve ot velocty, compute velocty state ad Cartesa veloctes of each body alog the forward path from body to body Y Y + q Step 3: Usg Cartesa postos, oretatos ad veloctes of bodes, compute state mass matrces ad state force vectors c m I m r c c c c c m r J m r r c c f + m rω Q (Q + R Qc c c c c c c + r f + m r rω ω Jω Step 4: Compute velocty couplg terms for each ots D q A C A 28

Recursve algorthm I Step 5: Compute composte erta ad force alog the backward path from body to body - - - ( for body,,, L - L - D - - ( (L - D fo r b o d y,,, - - + - for body,, L Q + L for body,, - - - Ad save followg terms - s -( - s -( ( D - L 2 Step 6: Solve for state accelerato of the base body Y L Step 7: Compute ot acceleratos ad accelerato state of each body alog the forward path from body to body q sy + s2 Y Y + q + D for,2,, - Step 8: Itegrate ot veloctes ad ot acceleratos for ext step Step 9: Go to Step utl the smulato edg tme s reached 29

RECURSIVE FORULAION II 3

Recursve II Formulato (reducto procedure -2-2 δz (Y Q +δz -(-Y- Q -+δz (Y Q δ Z δ Z + δq [ + ] δz ( Y Q +δz ( Y Q ( Y Q +δq ( Y Q - - - - -2 δz ( Y Q Y Y + q + D +δz [ - (-Y- Q - + (Y + q (Q D ] ( +δq Y + q (Q D - Sce δq s arbtrary, coeffcet of δq must be zero. Y + q (Q D - 3

-2 3 - Recursve II Formulato (reducto procedure δz ( Y Q +δz [( + Y + q { Q + (Q D }] - - - - -2 δz ( Y Q +, L Q + ( L + + D +, L Q δz ( Y Q +δz [ Y + q L ] - - - δ Z δ Z + δq Y Y + q + D 2 2 +δz -2[ (-2 + - Y- 2 + - q + q ( Q-2 + ( L -D ] ( +δq Y + q + q ( L D - 2 - - Sce δq s arbtrary, coeffcet of δq must be zero. Y + q + q ( L D - 2 - - 32

Recursve II Formulato (reducto procedure 3 - δz ( Y Q +δz [( + Y + q + q ( Q + ( L D ] -2-2 - -2 - -2-2 + 2 L Q + ( L D 2 2 3 - [ δz ( Y Q +δz Y + q + q L ] -2-2 -2-2 ackward recurrece formula +,, 2,,, + L L Q Q + ( L +, 2,,, + D + 33

Recursve II Formulato (reducto procedure Y - + q (Q D Y + q + q ( L D - 2 - - Y Y + q + D Y + ( q + D 2 k k k k Y + ( q + D k k k k Y q + q (L D + k k k k k Y + kq k + q + q L D - - - - k k k ( If we apply ths procedure cotually from body -2 to, the we wll get a system of equatos of moto ot space. 34

Recursve II Formulato (reducto procedure Equato of oto Jot Space. where q P symm q [ q, q,, q, q, Ẏ ] 2 P ( L D ( L D 2 2 ( L 2 2 D ( L D L ackward recurrece formula +,, 2,,, + L Q L Q + ( L D, 2,,, + + + 35

Recursve algorthm II Step : Gve ot coordates, compute posto ad oretato alog the forward path from body to body A " r r + s + d r + A s + A C d ( q Step 2: Gve ot velocty, compute velocty state ad Cartesa veloctes of each body alog the forward path from body to body Y Y + q Step 3: Usg Cartesa postos, oretatos ad veloctes of bodes, compute state mass matrces ad state force vectors c m I m r c c c c c m r J m r r c c f + m rω Q (Q + R Qc c c c c c c + r f + m r rω ω Jω Step 4: Compute velocty couplg terms for each ots D q A C A 36

Recursve algorthm II Dk Step 5: Compute composte couplg term alog the forward path k from body to body Step 6: Compute composte erta ad composte force L alog the backward path from body to body +,, 2,,, + L Q L Q + ( L D, 2,,, + + + Step 7: Costruct etres of system matrx ad RHS vector P symm ( L D ( L D P 2 2 ( L 2 2 D ( L D Step 8: Solve for ot acceleratos q P L Step 9: Recoverg accelerato state ad Cartesa accelerato of each body alog the forward path from body to body, f ecessary Step : Itegrate ot veloctes ad ot acceleratos for ext step Step: Go to Step utl the smulato edg tme s reached 37

RECURSIVE FORULAION FOR A CLOSED LOOP SYSE 38

39 RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE (,,, Φ r A r A ( ( ( + + + + λ Φ Z Q Y Z λ Φ Z Q Y Z Q Y Z z z δ δ δ δ δ o apply recursve formulato, closed loop system must be ope by cut ot. Cut ot model s represeted as costrat equatos Usg Lagrage multpler theorem, followg equatos are obtaed he recursve formula ca be appled to each brach.

RECURSIVE FORULAION FOR A CLOSED LOOP SYSE Covertg Cartesa costrat Jacoba matrces to those Jot space Φ ( r, A, r, A δφ Φ δr + Φ δπ + Φ δr + Φ δπ r π r π Φ δz + Φ δz z z δz δz + δq δz + δq + δq : 2 δz + k δq k δz δz δq + k k k k δφ Φ Τδz z δz Τδz + Φ Τ δz z Φ δz + Φ δz z z 4

RECURSIVE FORULAION FOR A CLOSED LOOP SYSE z δφ Φ δz + δq + Φ δz + δq k k z k k k k ( Φ + Φ δz + Φ δq + Φ δq z z z k k z k k k k δq : : [ ] δq Φz Φ z Φz Φ z δq : : δq Φδq q Φ [ Φ Φ Φ Φ ] q z z z z [ Φ Φ ] q l q r δq δq : : δq δq : : δq 4

42 RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE r l r l r rr r l ll l r l P P P λ q q Y Φ Φ q q ( ( ( + + + + λ Φ Z Q Y Z λ Φ Z Q Y Z Q Y Z z z δ δ δ δ δ for rght brach, for rght brach: (,( 2,, for left brach, 2,, + + Cartesa Vrtual work form of EQ for a closed loop system Apply Recursve II formulato to Cartesa Vrtual work form EQ for rght brach (, for left brach:, 2,, for rght brach: (,( 2,, + + + + L Q L Q L D

43 RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE RECURSIVE FORULAION FOR A CLOSED LOOP SYSE + + ( ( D L D L Q P + + [ ] l 2 2 [ ] 2 2 r ll symm 2 2 2 2 2 2 2 2 2 2 2 2 rr symm [ ] z z z l Φ Φ Φ Φ q 2 [ ] 2 z z z r Φ Φ Φ Φ q [ ] l q q q 2 q [ ] r q q q 2 q ( ( ( 2 2 2 2 l D L D L D L P ( ( ( 2 2 2 2 r D L D L D L P r l r l r rr r l ll l r l P P P λ q q Y Φ Φ q q Above EQ has more ukwos tha equatos, eed more equatos

RECURSIVE FORULAION FOR A CLOSED LOOP SYSE Augmeted DAE system s obtaed by addg costrat accelerato equatos as; Y yy yq Py Φ q yq qq q Pq Φq λ γ Φ Φ Y + Φ Y + Φ Y z z + Φ where z Φ Y + Φ Y [ ] γ yq l r Costrat accelerato equatos ot space z z z Y yy Φ q [ Φ Φ ] ql qr ll qq P P P q q [ ] l [ ] r q l q r rr Φ ql q l Y Y + ( q + D k k k k Y Y + ( q + D k k k k + Φ q qr r γ Φz D Φz D γ 44