A steady, purely azimuthal flow model for the Antarctic Circumpolar Current

Similar documents
TWO-POINT BOUNDARY PROBLEM FOR MODELING THE JET FLOW OF THE ANTARCTIC CIRCUMPOLAR CURRENT

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Capabilities of Ocean Mixed Layer Models

Atmosphere, Ocean, Climate Dynamics: the Ocean Circulation EESS 146B/246B

Internal boundary layers in the ocean circulation

Introduction to Physical Oceanography Homework 3 - Solutions. 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC):

Convection Induced by Cooling at One Side Wall in Two-Dimensional Non-Rotating Fluid Applicability to the Deep Pacific Circulation

Thermohaline and wind-driven circulation

2.3 The Turbulent Flat Plate Boundary Layer

Wind Gyres. curl[τ s τ b ]. (1) We choose the simple, linear bottom stress law derived by linear Ekman theory with constant κ v, viz.

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability

VISCOUS FLOW DUE TO A SHRINKING SHEET

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction

SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes

Wind-driven Western Boundary Ocean Currents in Terran and Superterran Exoplanets

Tide-Topography Interactions: Asymmetries in Internal Wave Generation due to Surface Trapped Currents

Islands in Zonal Flow*

Upper Ocean Circulation

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

arxiv: v2 [physics.flu-dyn] 9 Apr 2014

Buoyancy Fluxes in a Stratified Fluid

Lecture 1. Amplitude of the seasonal cycle in temperature

Module Contact: Dr Xiaoming Zhai, ENV Copyright of the University of East Anglia Version 2

Eddy-induced meridional heat transport in the ocean

Model equations for planetary and synoptic scale atmospheric motions associated with different background stratification

MAE 101A. Homework 7 - Solutions 3/12/2018

Coriolis force in Geophysics: an elementary introduction and examples

g (z) = 1 (1 + z/a) = 1

arxiv:physics/ v1 [physics.ed-ph] 10 May 2000

P-Vector Inverse Method Evaluated Using the Modular Ocean Model (MOM)

The dynamics of high and low pressure systems

I. Ocean Layers and circulation types

Equatorial Superrotation on Tidally Locked Exoplanets

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Passive Scalars in Stratified Turbulence

HYBRID DECADE-MEAN GLOBAL SEA LEVEL WITH MESOSCALE RESOLUTION. University of Hawaii, Honolulu, Hawaii, U.S.A.

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany

Goals of this Chapter

PHYS 432 Physics of Fluids: Instabilities

F11AE1 1. C = ρν r r. r u z r

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be

Estimates of Diapycnal Mixing Using LADCP and CTD data from I8S

M. Ballarotta 1, L. Brodeau 1, J. Brandefelt 2, P. Lundberg 1, and K. Döös 1. This supplementary part includes the Figures S1 to S16 and Table S1.

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Atmospheric driving forces for the Agulhas Current in the subtropics

Dynamic Meteorology - Introduction

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used.

ATMOSPHERIC AND OCEANIC FLUID DYNAMICS

A process study of tidal mixing over rough topography

Introduction to Atmospheric Circulation

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI Dr. Katrin Meissner Week 5.

LETTERS. Influence of the Thermohaline Circulation on Projected Sea Level Rise

Boundary Layers: Homogeneous Ocean Circulation

2/15/2012. Earth System Science II EES 717 Spring 2012

The Planetary Circulation System

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force

Strongly nonlinear long gravity waves in uniform shear flows

A Simple Turbulence Closure Model

Steady Water Waves. Walter Strauss. Laboratoire Jacques-Louis Lions 7 November 2014

A Simple Turbulence Closure Model. Atmospheric Sciences 6150

UNIVERSITY OF EAST ANGLIA

On the formation of Subtropical Countercurrent to the west of the Hawaiian Islands

Ocean and Climate I.

5.1 Fluid momentum equation Hydrostatics Archimedes theorem The vorticity equation... 42

Depth Distribution of the Subtropical Gyre in the North Pacific

Pathways in the ocean

g (z) = 1 (1 + z/a) = 1 1 ( km/10 4 km) 2

Exam Questions & Problems

Stability of meridionally-flowing grounded abyssal currents in the ocean

Double-diffusive lock-exchange gravity currents

no eddies eddies Figure 3. Simulated surface winds. Surface winds no eddies u, v m/s φ0 =12 φ0 =0

Influence of forced near-inertial motion on the kinetic energy of a nearly-geostrophic flow

Lecture 4:the observed mean circulation. Atmosphere, Ocean, Climate Dynamics EESS 146B/246B

Numerical Simulations of a Stratified Oceanic Bottom Boundary Layer. John R. Taylor - MIT Advisor: Sutanu Sarkar - UCSD

Geostrophic and Quasi-Geostrophic Balances

Ocean Dynamics. The Great Wave off Kanagawa Hokusai

Island Wakes in Shallow Water

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration

Boundary Layers. Lecture 2 by Basile Gallet. 2i(1+i) The solution to this equation with the boundary conditions A(0) = U and B(0) = 0 is

Thomas Pierro, Donald Slinn, Kraig Winters

The Multiple Solutions of Laminar Flow in a. Uniformly Porous Channel with Suction/Injection

arxiv: v1 [math.ap] 30 Aug 2017

UC Irvine Faculty Publications

Instability of a coastal jet in a two-layer model ; application to the Ushant front

Chapter 3. Shallow Water Equations and the Ocean. 3.1 Derivation of shallow water equations

A note concerning the Lighthill sandwich model of tropical cyclones

Dynamics Rotating Tank

Models of ocean circulation are all based on the equations of motion.

The Shallow Water Equations

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity

HADLEY CELL EXPANSION IN TODAY S CLIMATE AND PALEOCLIMATES

The Southern Ocean. Copyright 2010 LessonSnips

Surface Circulation Ocean current Surface Currents:

Ocean currents: some misconceptions and some dynamics

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Chapter 6. Antarctic oceanography

On side wall labeled A: we can express the pressure in a Taylor s series expansion: x 2. + higher order terms,

Transcription:

Monatsh Math (2018) 187:565 572 https://doi.org/10.1007/s00605-017-1097-z A steady, purely azimuthal flow model for the Antarctic Circumpolar Current Ronald Quirchmayr 1 Received: 21 July 2017 / Accepted: 4 September 2017 / Published online: 8 September 2017 The Author(s) 2017. This article is an open access publication Abstract We consider a steady, purely azimuthal eddy viscosity flow model for the Antarctic Circumpolar Current and derive an exact formula for the solution. Keywords Geophysical flows Ocean dynamics Eddy viscosity f -plane approximation Mathematics Subject Classification 86A05 35Q35 1 Introduction The Antarctic Circumpolar Current (ACC) flows around Antarctica at latitudes between 40 to 60 without meridional boundaries and thereby completely encircles the polar axis towards East. It is the strongest current in the World Ocean and is primarily driven by the wind stress [12,18]. Interesting new wave tyes, which may be important to the dynamics of Southern Ocean currents like the ACC were recently derived in [7]. An exact, steady and purely azimuthal model for the ACC in spherical coordinates without eddy viscosity was introduced in [5]. Furthermore we refer Communicated by A. Constantin. The support of the Austrian Science Fund (FWF), Grant W1245, and the European Research Council, Consolidator Grant No. 682537 is acknowledged. B Ronald Quirchmayr ronaldq@kth.se 1 Department of Mathematics, KTH Royal Institute of Technology, Lindstedtsvägen 25, 100 44 Stockholm, Sweden

566 R. Quirchmayr the reader to [10] for the analysis of an ACC model, which establishes a connection between the free surface and the pressure. In this paper we consider a purely azimuthal divergence free flow, which is governed by the incompressible Euler equations in the f -plane approximation near the 45th parallel south. The action of mesoscale eddies that transfer the surface stress to the bottom (see [12]) is taken into account by adding an eddy-viscosity term to the system. Furthermore we assume the presence of a constant wind stress and a constant atmospheric pressure on the ocean surface. On the flat bottom we impose a no-slip boundary condition. This system can be solved exactly and the solution is written in terms of the viscosity function, cf. Sect. 3. 2 The model As a starting point we consider the f -plane approximation of Euler s equations for three-dimensional divergence-free ocean flows in the region of the ACC. Generally, for a fixed specified polar angle θ, where θ takes values between π/2 and π/2 (e.g. we have that θ = 0 along the Equator, θ = π/2 at the South Pole and θ = π/2 atthe North Pole) the f -plane approximation is given by u t + uu x + vu y + wu z + 2(Ω y w Ω z v) = 1 ρ P x v t + uv x + vv y + wv z + 2(Ω z u Ω x w) = 1 ρ P y w t + uw x + vw y + ww z + 2(Ω x v Ω y u) = 1 ρ P z g u x + v y + w z = 0, (2.1) where Ω x = 0, Ω y = Ω cos θ, Ω z = Ω sin θ. Here t denotes the time and x, y, z denote the directions of increasing azimuth, latitude and vertical elevation respectively. Similarly we denote by u = u(x, y, z, t), v = v(x, y, z, t) and w = w(x, y, z, t) the velocity components of the flow field in direction of increasing azimuth, latitude and elevation. Furthermore P = P(x, y, z, t) denotes the pressure field. The constant Ω 7.29 10 5 rad s 1 denotes the rotational speed of the Earth around the polar axis and g 9.81 m s 2 is the gravitational acceleration. The fluid density ρ is taken to be constant, since there is low stratification in the Polar region [9,18]. For modeling the ACC we take θ = π/4, which corresponds to the 45th parallel south. Furthermore we restrict our considerations to the special case of purely azimuthal flows, i.e. we assume that v = 0 and w = 0. (2.2)

A steady, purely azimuthal flow model for the ACC 567 Thus (2.1) reduces to the linear system 0 = 1 ρ P x (2.3) 2Ω u = 1 ρ P y (2.4) 2Ω u = 1 ρ P z g (2.5) u x = 0. (2.6) In order to include the transfer of the wind-generated surface stress to the bottom, which is due to the presence of mesoscale eddies [12], we add a viscosity term of the form (νu z ) z to (2.3) similarly as in [14] in the context of equatorial flows. The classical model of uniform eddy viscosity is due to [17]. We follow the more realistic approach with a depth dependent viscosity function as it was introduced in [8]. For solutions of the equatorial current system and their qualitative properties under the assumption of depth-dependent eddy viscosity we refer to [3,13,16] and the references therein. Furthermore we add an a priori unknown forcing term F to (2.4), cf. Remark 1, which will be determined in the analysis in Sect. 3. The viscosity function ν = ν(z), whichisassumedtobesmoothwith ν >δfor some δ>0, only depends on the depths of water [12], whereas F may depend on both y and z. (It is clear that F is independent of x.) Thus in summary we end up with the following system: 0 = 1 ρ P x + (νu z ) z (2.7) 2Ω u = 1 ρ P y + F (2.8) 2Ω u = 1 ρ P z g (2.9) u x = 0. (2.10) Before introducing the boundary conditions for u and P, weset τ = τ(y, z) := ρνu z, (2.11) which is referred to as wind stress. Let d denote the depth of water, which is taken to be constant, i.e. we assume a flat ocean bed. The water surface is considered to be flat, being located at z = 0. Thus the fluid domain consists of the layer D = R 2 [, 0] R 3. On the boundary of D, which consists of the bottom {z =} and the surface {z = 0}, we impose the following conditions: P = P atm on z = 0 (2.12) τ = τ 0 on z = 0 (2.13)

568 R. Quirchmayr u = 0 on z =. (2.14) Here P atm denotes the constant atmospheric pressure at sea level and τ 0 is a constant related to the wind stress at the surface of the ocean. Remark 1 We note that the usage of the forcing term F is necessary to ensure the existence of a nontrivial flow: otherwise we would end up with the relation u y = u z holding within the entire fluid domain. To see this we first differentiate (2.8) with respect to z. Next we differentiate (2.9) with respect to y and combine the respective outcomes. If we assume that F = 0, we get that u y = u z and the no-slip boundary condition (2.14) implies that u = 0 throughout D. Our assumption that the wind-stress at the surface τ 0 is independent of both x and y simplifies the model and can not be justified globally, since the wind system in the region of the ACC is rather complex. In fact, the ACC is in contrast to most other ocean currents not a single flow, but a fragmented system of strong, regionally bounded jets [15]. Locally, within such a jet, it is reasonable to take τ 0 to be constant; cf. the real-time animations of ocean currents and winds on https://earth.nullschool. net/. To get a rough global picture, we may take an average value for τ 0. Let us furthermore emphasize that the linear nature of system (2.7) (2.10) does not stem from approximations. This is a consequence of the reasonable assumption of a purely azimuthal flow satisfying (2.2). 3 An exact solution In this section we provide an exact formula for the solution of the system (2.7) (2.10), i.e. formulas for the horizontal velocity u and the pressure P. These results are summarized in the following theorem. Theorem 1 The solution of system (2.7) (2.10) with the boundary conditions (2.12) (2.14) incorporated is given by u = u(z) = τ 0 ρ z ds ν(s) (3.1) and P = P(z) = [ z 2Ωρ 0 u(s)ds for z 0. The forcing term F satisfies ] u(s)ds ρgz+ P atm (3.2) F = F(z) = 2Ω u(z), z 0. (3.3) Remark 2 We illustrate the velocity profile of the flow field for a particular viscosity function ν in Fig. 1. The horizontal velocity u is generally strictly monotonous, since ν does not change sign by assumption, cf. Sect. 2.

A steady, purely azimuthal flow model for the ACC 569 Fig. 1 The viscosity function ν (orange) in this plot decreases exponentially with depth. The corresponding solution u (blue) decreases monotonically with depth The formulas (3.1) and (3.2) in particular reveal that we are actually dealing with a two-dimensional model. Proof of Theorem 1 By applying x on (2.9) and employing (2.10) we obtain that P xz = 0 in D. (3.4) We infer from (2.7) by differentiation with respect to z that 0 = ρ 1 P xz + (νu z ) zz in D. (3.5) Thus, by (3.4) wehavethat 0 = (νu z ) zz in D. (3.6) From (3.6) and (2.10) we obtain via integration with respect to z that νu z = A(y) z + B(y) in D, (3.7) and hence τ(y, z) = ρ(a(y)z + B(y)) in D (3.8)

570 R. Quirchmayr due to (2.11). By employing the boundary condition (2.13) we infer that τ(y, 0) = ρ B(y) = τ 0 for all y R. (3.9) Thus B is independent of y and takes the constant value By using (3.7) and (2.7) we obtain and integration with respect to x yields Since B = τ 0 /ρ. (3.10) (νu z ) z = A(y) = ρ 1 P x in D, (3.11) ρ 1 P = A(y) x + C(y, z) in D. (3.12) ρ 1 P y = A (y) x + C y (y, z) = 2Ωu + F(y, z), (3.13) where the later expression is independent of x, we have that A (y) = 0, hence A(y) = A 1 y + A 2 with A 1,2 R. (3.14) Since (A 1 y + A 2 ) x +C(y, 0) = ρ 1 P atm for all x, y R according to (3.12), (3.14) and (2.12), we conclude that In particular we get that A 1 = A 2 = 0 and C(y, 0) = ρ 1 P atm for all y R. (3.15) P x = 0 in D. (3.16) By combining (3.7), (3.10), (3.14), (3.15) and (2.14) we obtain that u is independent of y and satisfies (3.1). In view of (2.9) we see that ρ 1 P z = 2Ω u(z) g in D and integration with respect to z gives P = P(z) = z 2Ωρ u(s)ds ρg z + C(y) in D. (3.17) Due to the boundary condition (2.12) we infer that the constant of integration C(y) = C in (3.17) is independent of y and satisfies C = 0 2Ωρ u(s)ds + P atm, (3.18)

A steady, purely azimuthal flow model for the ACC 571 hence P is given by (3.2). We finally deduce from (2.8) that F satisfies (3.3), since P is independent of the y-coordinate. Remark 3 In contrast to equatorial flows, where stratification plays a dominant role and leads to two-layer models (see e.g. [3,4,6,13,16]), there is almost no stratification in the Southern Ocean [9,18]. Therefore we considered a one-layer model for describing the dynamics of the ACC, cf. Sect. 2. Let us note that the velocity profile of the solution u of system (2.7) (2.14)(cf.Fig. 1) differs strongly from stratified flows in equatorial regions like the Equatorial Undercurrent, where u changes its sign (i.e. the direction of the flow gets reversed) at a certain depth between the surface and the thermocline that separates the two layers of different fluid density. Remark 4 Let us finally point out another difference between equatorial flows and flows in the Southern Ocean like the ACC. While surface waves near the Equator are generally not higher than a few meters (see the discussion in [1]), there exist surface waves in the Southern Ocean having a wave height up to 30 m, cf. [19]. Investigations of such large surface waves and their interactions with underlying currents could thus be of particular interest in the near future. Another interesting question concerns the stability of waves. In [2] it was shown that instability of certain waves in equatorial regions does occur. On the other hand, short-wavelength stability results for certain equatorial flows are available in [11]. Similar stability results in the context of Southern Ocean currents would be of great interest. Acknowledgements The author is grateful for helpful comments from the referee. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. References 1. Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. Oceans 117, C05029 (2012) 2. Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802 2810 (2013) 3. Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the equatorial undercurrent. Geophys. Astrophys. Fluid Dyn. 109(4), 311 358 (2015) 4. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46, 1935 1945 (2016) 5. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the antarctic circumpolar current. J. Phys. Oceanogr. 46, 3585 3594 (2016) 6. Constantin, A., Johnson, R.S.: A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline. J. Phys. Oceanogr. 46, 3585 3594 (2016) 7. Constantin, A., Monismith, S.G.: Gerstner waves in the presence of mean currents and rotation. Phys. Fluids 29, 056604 (2017) 8. Cronin, M.F., Kessler, W.S.: Near-surface shear flow in the tropical Pacific cold tongue front. J. Phys. Oceanogr. 39, 1200 1215 (2009)

572 R. Quirchmayr 9. Firing, Y.L., Chereskin, T.K., Mazloff, M.R.: Vertical structure and transport of the Antarctic Circumpolar Current in Drake Passage from direct velocity observations. J. Geophys. Res. 116, C08015 (2004) 10. Hsu, H.C., Martin, C.I.: On the existence of solutions and the pressure function related to the Antarctic circumpolar current. Nonlinear Anal. 155, 285 293 (2017) 11. Ionescu-Kruse, D., Martin, C. I.: Local Stability for an exact steady purely azimuthal equatorial flow. J. Math. Fluid Mech., to appear. doi:10.1007/s00021-016-0311-4 12. Ivchenko, V.O., Richards, K.J.: The dynamics of the Antarctic circumpolar current. J. Phys. Oceanogr. 26, 753 774 (2012) 13. Martin, C.I.: Dynamics of the thermocline in the equatorial region of the Pacific ocean. J. Nonlinear Math. Phys. 22, 516 522 (2015) 14. McCreary, J.P.: Modeling equatorial ocean circulation. Annu. Rev. Fluid Mech. 17, 359 409 (1985) 15. Olbers, D., Borowski, D., Völker, C., Wolff, J.-O.: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarctic Sci. 16(4), 439 470 (2004) 16. Quirchmayr, R.: On the existence of benthic storms. J. Nonlinear Math. Phys. 22, 540 544 (2015) 17. Stommel, H.: Wind drift near the equator. Deep Sea Res. 6, 298 302 (1960) 18. Tomczak, M., Godfrey, J.S.: Regional Oceanography: An Introdution. Pergamon Press, Oxford (1994) 19. Walton, D.W.H.: Antarctica: Global Science from a Frozen Continent. Cambridge University Press, Cambridge (2013)