Physics 3150, Laboratory X January 22, 2014 Ann Onymous (lab partner: John Doe)

Similar documents
Prepare for this experiment!

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13

Prepare for this experiment!

Experiment 4: Resistances in Circuits

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

ERROR ANALYSIS ACTIVITY 1: STATISTICAL MEASUREMENT UNCERTAINTY AND ERROR BARS

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives

Experiment #6. Thevenin Equivalent Circuits and Power Transfer

Electricity and Light Pre Lab Questions

Industrial Electricity

Errors in Electrical Measurements

Voltage Dividers, Nodal, and Mesh Analysis

PHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS

CHAPTER FOUR CIRCUIT THEOREMS

Thevenin equivalent circuits

EXPERIMENT 12 OHM S LAW

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Thevenin Norton Equivalencies - GATE Study Material in PDF

Lab E3: The Wheatstone Bridge

E2: Internal Resistance of Measuring Instruments

Chapter 5. Department of Mechanical Engineering

Chapter - 1 Direct Current Circuits

farads or 10 µf. The letter indicates the part tolerance (how close should the actual value be to the marking).

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory

Laboratory I: Impedance

6. The default plot created by Excel meets all of the requirements for a formal report plot in ME 360.

Chapter 10 AC Analysis Using Phasors

University of Alabama Department of Physics and Astronomy. Problem Set 4

MECHANICAL ENGINEERING TECHNOLOGY ESSENTIALS FOR LABORATORY REPORTS

Lab #6 Ohm s Law. Please type your lab report for Lab #6 and subsequent labs.

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

The Digital Multimeter (DMM)

Lab 4 Series and Parallel Resistors

EECE208 Intro to Electrical Engineering Lab. 5. Circuit Theorems - Thevenin Theorem, Maximum Power Transfer, and Superposition

Sirindhorn International Institute of Technology Thammasat University at Rangsit

Lecture Notes on DC Network Theory

Physics 102 Lab 4: Circuit Algebra and Effective Resistance Dr. Timothy C. Black Spring, 2005

EXPERIMENT 5A RC Circuits

The Approximating Impedance

Chapter 5: Circuit Theorems

Experiment 9 Equivalent Circuits

Electrical Circuits I Lecture 8

Review of Ohm's Law: The potential drop across a resistor is given by Ohm's Law: V= IR where I is the current and R is the resistance.

The RC Circuit INTRODUCTION. Part 1: Capacitor Discharging Through a Resistor. Part 2: The Series RC Circuit and the Oscilloscope

Laboratory #1: Inductive and Capacitive Transients Electrical and Computer Engineering EE University of Saskatchewan

Lab 5 - Capacitors and RC Circuits

Laboratory I: Impedance

Direct Current (DC): In a DC circuit the current and voltage are constant as a function of time. Power (P): Rate of doing work P = dw/dt units = Watts

AC "POLARITY" Complex numbers are useful for AC circuit analysis because they provide a

DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE

meas (1) calc calc I meas 100% (2) Diff I meas

Experiment 8: Capacitance and the Oscilloscope

RC, RL, and LCR Circuits

Name Date Time to Complete. NOTE: The multimeter s 10 AMP range, instead of the 300 ma range, should be used for all current measurements.

2. In words, what is electrical current? 3. Try measuring the current at various points of the circuit using an ammeter.

AC Circuit. a) Learn the usage of frequently used AC instrument equipment (AC voltmeter, AC ammeter, power meter).

Some Important Electrical Units

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits

Lab 4. Series and Parallel Resistors

Lab #3 Linearity, Proportionality, and Superposition

Solutions to Systems of Linear Equations

EE301 RESISTANCE AND OHM S LAW

Name Date Time to Complete

Experiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.

CHAPTER 5. BRIDGES AND THEIR APPLICATION Resistance Measurements. Dr. Wael Salah

Lecture 4: Feedback and Op-Amps

RESISTANCE AND NETWORKS

Lab 6. RC Circuits. Switch R 5 V. ower upply. Voltmete. Capacitor. Goals. Introduction

D C Circuit Analysis and Network Theorems:

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

Chapter 5 Objectives

Introduction. Pre-lab questions: Physics 1BL KIRCHOFF S RULES Winter 2010

Measurement of Electrical Resistance and Ohm s Law

15EE103L ELECTRIC CIRCUITS LAB RECORD

Data Analysis, Standard Error, and Confidence Limits E80 Spring 2015 Notes

1. Review of Circuit Theory Concepts

Electrical Circuits Lab Series RC Circuit Phasor Diagram

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

Lab 4. Current, Voltage, and the Circuit Construction Kit

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I

PHY222 - Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge.

Experiment 2. F r e e F a l l

MAE140 HW3 Solutions

PURPOSE: See suggested breadboard configuration on following page!

AE60 INSTRUMENTATION & MEASUREMENTS DEC 2013

Data Analysis, Standard Error, and Confidence Limits E80 Spring 2012 Notes

DC Circuit Analysis + 1 R 3 = 1 R R 2

Switch + R. ower upply. Voltmete. Capacitor. Goals. Introduction

Tutorial #4: Bias Point Analysis in Multisim

Goals: Equipment: Introduction:

Circuit Lab Test. School Name: Competitor Names: For this test:

E2.2 Analogue Electronics

Simple circuits - 3 hr

Familiarization, and Ohm's Law

Let V1=12V, R1=50 ohms, R2=10K ohms, R3=2K ohms, and R4=500 ohms. RL represents the load placed on the circuit between points Aand B.

Physics 220: Worksheet 7

Electric Circuit Theory

Transcription:

A. Procedure and Results Physics 150, Laboratory X January, 01 Ann Onymous (lab partner: John Doe) A.1. Voltage and current for a resistor bridge We constructed a resistor bridge circuit as indicated in the lab writeup. Its schematic diagram is also shown below in part B. We measured the current through each of several load resistors Rload using a DMM in series, and the voltage across each using a DMM in parallel. The resistors have a tolerance of 5%. Table I summarizes the results. Table I. Voltage and current data for the resistor bridge, for various resistors R load. Calculated current I calc is described in text. Estimated DMM uncertainties are 0.005 V for V load and 0.05 ma for I load. R () V load (V) I load (ma) I calc (ma) 680 1.6..0 80 1.8.. 1000.05.1.05 1800.71 1.5 1.51 000.87 1. 1. 000.9 0. 0.0 The DMM uncertainties are set by the finite resolution of the readout. 1 Expressed as percentage errors they range from % to 5% for the currents, but only from 0.1% to 0.% for the voltage. Because the currents can be calculated from the voltages using the known resistance, I V / R load load load, the current readings are actually superfluous. The calculated values Icalc are shown in the last column of in Table I. Their uncertainty is set by the 5% resistor tolerance, though this could be reduced by measuring R directly. These results are plotted in Fig. 1 together with a linear regression fit, which lies well within the error bars. For this fit the reduced value of is 0., well below the expected value of ~1, indicating that the statistical uncertainties are somewhat overestimated. The coefficients of the fit give the parameters Rth and Vth of the Thévenin equivalent circuit (11 and.5 V), which can be compared with the results of Section A. below. This method is more time-consuming but has the advantages of being nondestructive and yielding enough statistical data to reliably estimate the uncertainties. 1

.5 Part A.1 Vload Linear (Vload) Voltage (V).5.5 y = -111.8x +.509 1.5 0 0.0005 0.001 0.0015 0.00 0.005 0.00 Current (A) Fig.1. Voltage vs. current for the resistor bridge circuit of part A.1, with a linear regression fit to determine RTh and VTh. A.. Thévenin equivalent circuit We measured the short circuit current Isc= (.8 ± 0.05) ma and the open circuit voltage Voc = (.5 ± 0.005) V. Their ratio predicts a Thévenin equivalent resistance of Rth = (100 ± 16). 5 We then constructed the equivalent circuit with a 1. k (±5%) resistor and re-measured the data of Table I using the same set of resistors as before, obtaining the results shown in Table II. Table II. Voltage and current data for the Thévenin equivalent circuit. The measured quantities and uncertainties are as in Table I. R () V load (V) I load (ma) 680 1.6. 80 1.8. 1000.0.1 1800.69 1.5 000.8 1. 000.9 0.

A comparison with the results of Section A.1 is shown in Fig.. The result is gratifying; indeed it is much closer than the experimental errors and tolerances would lead one to expect. The fit results are hard to distinguish from those of the original resistor bridge circuit 6 they fall within a few parts per thousand..5.5 Comparison of Part A. and A.1 Vload Part A. Vload Linear (Vload Part A.) Linear (Vload) Voltage (V).5 y = -111.8x +.509 y = -109.9x +.579 1.5 0 0.0005 0.001 0.0015 0.00 0.005 0.00 Current (A) Fig.. Voltage vs. current measurements for Parts A.1 and A., with linear regression fits to each indicated by dotted lines. A.. Familiarization with the oscilloscope The TA specified that no writeup is required for this section, as the main objective was simply to gain experience with the equipment. B. Questions B.1. Direct solution using Kirchoff s laws For reference and nomenclature the circuit is sketched below. The load resistor Rload is not shown, but it connects between points 1 and. Using the mesh loop method, we write three loop equations for the currents I1, I, and I: Do this (1) yourself! () (But ask for help if needed.) ()

Fig.. Sketch of the bridge circuit, adapted from the lab writeup provided on the Physics 150 web page. These equations can be solved to find the current Iload = I I that flows through the load resistor, and the corresponding voltage Vload = Rload Iload. This is most easily done by using a computer mathematics package such as Mathematica for symbolic solutions, or Matlab or SPICE for numerical solutions. 7 The solution for Iload is I load Vin( RR RR 1 ). () R R R R R ( R R ) R R ( R R ) R ( R R R ) load load 1 load load Simplifying by substituting numerical values (with SI units), 6 51. Iload. (5) 6 1. 10 117Rload Note that Eq. (5) includes everything we need to know to find the Thévenin equivalent. Setting Rload to infinity gives the open-circuit voltage, VTh = 51./117 =.50 V. Setting it to zero gives the short-circuit current, Isc =.70 ma, and the ratio of these results yields the Thévenin equivalent resistance, RTh = 1. Comparing these to the results of Parts A.1 and A., we again find excellent agreement, much better than the resistor tolerances of 5% would suggest. B.. Remarks on accuracy This subject was already discussed in some detail in the text in general, the results agree more closely than the resistor tolerances of 5% would suggest. The input impedance of the voltmeter is a resistance of ~10 7 which will act in parallel with Rload. In the worst case when Rload ~10, this is only a 0.1% perturbation.

Likewise the ammeter input impedance is about 10-1 in series with the measurement terminals, so for the worst case when Rload ~10, it again causes a perturbation of only about 0.1%. B.. Peak-to-peak vs. rms voltage In general it is not important which measure of ac voltage is used for comparisons, so long as the usage is consistent. However, as a practical matter digital scopes calculate the rms voltage by integrating root-mean-squared voltage over the entire waveform, which averages out noise fluctuations, whereas the peak-to-peak mesurements are very sensitive to noise spikes. In the present case this makes little difference, as the noise level was small. For comparison with dc measurements by a DMM the rms voltage is required. If the peak-to-peak value was measured instead, it can be converted by dividing by. It was also evident in the lab that DMMs are clearly not designed for measuring ac signals at rf frequencies, or indeed anything far in excess of 60Hz. They show a decreasing reading for increasing frequency, even for a constant-amplitude input. Notes 1 It can be difficult to estimate errors, and a detailed statistical analysis of the data set is not always necessary, or even possible. In this case the DMM is not being read to its full.5 digit resolution, so it is a pretty safe assumption that the uncertainty does not exceed 1/ in the last displayed digit. Thus the uncertainties listed here should be an upper bound. Under other circumstances it might be necessary to look up or measure the absolute accuracy of the instrument. If so, this would be a systematic uncertainty, not a random or statistical uncertainty. If a reading fluctuates, it s helpful to estimate the range of the fluctuations, taking an approximate average as the reading, with an uncertainty based on the fluctuations (in principle it should be based on the rms deviation and the number of samples used; in practice it s often easiest to repeat the first measurement three or four times to see how much it varies. Of course, systematic errors are possible in electronics just as in any other experimental science: voltmeters can be miscalibrated, component values can be inaccurate, and the measuring instruments can perturb the circuit due to the finite input impedances. These issues are often important, and in most cases we will encounter, they cause uncertainties much larger than purely statistical fluctuations. A standard statistical measure of the quality of a least-squares fit is the statistic : the mean squared deviation of the data from the fit, with the deviation of each point expressed as a multiple of its uncertainty: fit data N i i. i1 i 5

If the uncertainties are estimated accurately, each term in the summation should have a value of approximately one. With this perspective in mind, but refined by a more quantitative analysis, statisticians define the reduced statistic to be / (N-M), where N is the number of data points and M is the number of adjustable parameters used in the least-squares fit. The expected value of this reduced chi-squared statistic can be looked up in statistical tables: it is just slightly larger than one, with a slight dependence on the number of samples. So the rule of thumb is that if the reduced chi-squared is close to one, the fit is good. This degree of statistical sophistication is normally not really required in your lab report, especially if your error bars behave as expected, encompassing the fit about / of the time. For further information ask your instructor or refer to a text, such as the ones listed in Note below. It is often not safe to place an ammeter directly between two terminals; in the present case this works because the resistor network restricts the current to well below the limit of the DMM, typically 1 A. We don t show the uncertainties here, but formulas for estimating the uncertainties in the slope and the intercept are given in most books on data analysis, for example Bevington and Robinson, Data Reduction and Error Analysis for the Physical Sciences, rd Ed., or Taylor, An Introduction to Error Analysis, nd Ed. Unfortunately many pre-programmed fitting routines do not provide these estimates, leaving the researcher to his own devices. One commonly-used exception is Origin graphics, which does provide estimates of the uncertainties of the fit results. 5 Formulas for the propagation of uncertainties are also readily available in Bevington or Taylor (see Note ). 6 The Course staff doesn t always get things right, either! The fits in Fig. would be much easier to distinguish if we made good use of colors or differing line types. In addition, the voltage used for the measurements and to obtain Eq. (5) from Eq. () is nowhere specified. 7 See www.partsim.com for a free graphical interface providing SPICE simulation of basic circuits. 6