Methoden moderner Röntgenphysik II: Streuung und Abbildung

Similar documents
Methoden moderner Röntgenphysik II: Streuung und Abbildung

Methoden moderner Röntgenphysik: Streuung und Abbildung

Methoden moderner Röntgenphysik II: Streuung und Abbildung

Methoden moderner Röntgenphysik II: Streuung und Abbildung

Methoden Moderner Röntgenphysik II - Vorlesung im Haupt-/Masterstudiengang, Universität Hamburg, SoSe 2016, S. Roth

Methoden moderner Röntgenphysik II Streuung und Abbildung

Small Angle X-ray Scattering (SAXS)

Methoden moderner Röntgenphysik II Streuung und Abbildung

Part 8. Special Topic: Light Scattering

Structural characterization. Part 2

Introduction to X-ray and neutron scattering

A Brief Review of Two Theoretical Models Used to Interpret the SAXS Intensities Measurements in Heterogeneous Thin Films.

Small Angle X-ray Scattering: Going Beyond the Bragg Peaks

Scattering experiments

Structural characterization. Part 2

Scattering and Diffraction

introduction to SAXS for polymers -a user view-

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov Lecture 10

How to judge data quality

STUDY OF SANS DISTRIBUTION FUNCTION FOR DIFFERENT PARTICLES AT DIFFERENT CONDITIONS

Introduction to Biological Small Angle Scattering

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie

Small-angle X-ray scattering a (mostly) theoretical introduction to the basics

Surface Sensitive X-ray Scattering

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie

SAS Data Analysis Colloids. Dr Karen Edler

Scattering Methods: Basic Principles and Application to Polymer and Colloidal Solutions

Structure Analysis by Small-Angle X-Ray and Neutron Scattering

Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES).

Supporting Information for: Complexation of β-lactoglobulin Fibrils and Sulfated Polysaccharides

Structural characterization. Part 1

SMALL-ANGLE NEUTRON SCATTERING (SANS) FOR CHARACTERIZATION OF MULTI-COMPONENT SYSTEMS

Combined SANS and SAXS in studies of nanoparticles with core-shell structure

The Small Angle X-ray Scattering Technique: An Overview

Robert Botet FRACTAL DUST PARTICLES: LIGHT SCATTERING AND ADSORPTION ANOMALIES. Laboratoire de Physique des Solides - Université Paris-Sud (France)

Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment

arxiv:physics/ v2 [physics.chem-ph] 8 Dec 2004

SAXS/SANS data processing and overall parameters

Electronic Supplementary Information (ESI) Synthesis of gold nanoparticles in a biocompatible fluid from sputtering deposition onto castor oil

Measuring particle aggregation rates by light scattering

Disordered Materials: Glass physics

Light scattering Small and large particles

Small Angle X-Ray Scattering

How DLS Works: Interference of Light

Anomalous Small-Angle X-Ray Scattering of Core-shell Nanoparticles

The Use of the Ultra Small Angle X-ray Scattering Technique to study the Solid Structure of Edible Fat Systems

Correlation Functions and Fourier Transforms

P. W. Anderson [Science 1995, 267, 1615]

Hidden Symmetry in Disordered Matter

Absence of decay in the amplitude of pair distribution functions at large distances

Methoden moderner Röntgenphysik II Streuung und Abbildung

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus

Small-angle x-ray scattering...and crystallisation processes

Structural characterization of amorphous materials using x-ray scattering

Supplemental Material Fluidity and water in nanoscale domains define coacervate hydrogels

A program for SAXS data processing and analysis *

Surfactant adsorption and aggregate structure at silica nanoparticles: Effect of particle size and surface modification. Supplementary Information

Small-Angle X-ray Scattering (SAXS) SPring-8/JASRI Naoto Yagi

Citation Journal of Physics D: Applied Physi / /47/43/

Methoden moderner Röntgenphysik I. Coherence based techniques II. Christian Gutt DESY, Hamburg

Colloidal samples investigated using coherent x-ray scattering methods. Michael Sprung DESY Hamburg,

Appendix C FITTING SANS DATA FROM COIL-LIQUID CRYSTALLINE DIBLOCK COPOLYMER SOLUTIONS

Supporting Information Soft Nanoparticles: Nano Ionic Networks of Associated Ionic Polymers

Biological Small Angle X-ray Scattering (SAXS) Dec 2, 2013

Fajun Zhang, Roland Roth, Marcell Wolf, Felix Roosen-Runge, Maximilian W. A. Skoda, Robert M. J. Jacobs, Michael Stzuckie and Frank Schreiber

GISAXS, GID and X-Ray Reflectivity in Materials Science

Main Notation Used in This Book

SAXS Basics for BioSAXS. Robert P. Rambo Diamond Light Source B21

Non-particulate 2-phase systems.

X-Ray Scattering Studies of Thin Polymer Films

Data reduction and processing tutorial

Biology III: Crystallographic phases

Convex and concave successions of power-law decays in small-angle scattering

Supplementary Information for Observation of dynamic atom-atom correlation in liquid helium in real space

ENAS 606 : Polymer Physics

Structure Determination of Polymer Nanocomposites by Small Angle Scattering

V 11: Electron Diffraction

Theory of liquids and polymers Prof. Dr. Walter Schirmacher, WS 2010/11, Univ. Mainz

Solution Set of Homework # 2. Friday, September 09, 2017

Kinetic theory of the ideal gas

Coherent X-ray Diffraction on Quantum Dots

Kolligative Eigenschaften der Makromolekülen

Synchrotron SAXS Studies of Nanostructured Materials and Colloidal Solutions. A Review

P. Vachette IBBMC (CNRS-Université Paris-Sud), Orsay, France

Supplementary Figure S1 Synthesis of tri(ethoxy)silane with boc-protected amino

Phonon dispersion relation of liquid metals

Gold-poly(N-isopropylacrylamide) core-shell colloids with homogeneous density profiles: A small angle scattering study

Hydrophobic interactions and small-angle neutron scattering in aqueous solutions

Experimental Soft Matter (M. Durand, G. Foffi)

Ultrafast Optical Demagnetization manipulates Nanoscale Spin Structure in Domain Walls: Supplementary Information

Coherent X-ray Scattering and X-ray Photon Correlation Spectroscopy

Macroscopic Polymer Analogues

Clay-Polymer Nanocomposites: Morphology, Structure, Properties and Applications

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate

5. 3P PIV Measurements

EXAFS SAXS WAXS. Neville Greaves Aberystwyth University Aberystwyth SY23 3BZ UK

Structure evolution of aluminosilicate sol and its structuredirecting effect on the synthesis of NaY zeolite

Introduction to SAXS at SSRL

Static and dynamic light scattering. Cy Jeffries EMBL Hamburg

Transcription:

. Methoden moderner Röntgenphysik II: Streuung und Abbildung Lecture 7 Vorlesung zum Haupt/Masterstudiengang Physik SS 2014 G. Grübel, M. Martins, E. Weckert Location: Hörs AP, Physik, Jungiusstrasse Tuesdays 12.45 14.15 Thursdays 8:30 10.00 1 Methoden moderner Roentgenphysik II - Vorlesung im Haupt/Masterstudiengang Physik, Universitaet Hamburg, SS 2014 G. Gruebel

. Methoden moderner Röntgenphysik II: Streuung und Abbildung Small Angle Scattering, and Soft Matter Introduction, form factor, structure factor, applications,.. Anomalous Diffraction Introduction into anomalous scattering,.. Introduction into Coherence Concept, First order coherence,.. Coherent Scattering Spatial coherence, second order coherence,.. Applications of coherent Scattering Imaging and Correlation spectroscopy,.. 2

. Small Angle X-ray Scattering (SAXS) From Eq. (**) I SAXS (Q) = f 2 n V at exp iq(r n -r m ) dv m = f 2 n exp iqr n V at exp-iqr m dv m = f 2 V at exp iqr n dv n V at exp -iqr m dv m I SAXS (Q) = V sl exp iqr dv 2 with s = f s 3 Methoden moderner Roentgenphysik ii - Vorlesung im Haupt/Masterstudiengang Physik, Universitaet Hamburg, SS2014 G. Gruebel

. Scattering from liquids and glasses The positions of atoms in non-crystalline materials changes over a wide range of timescales (from nanoseconds in the case of liquids to millennia or more in the case of glasses. X-rays are a fast probe delivering snapshots of the structure as shown schematically in the figure. Radial density: (r) = N(r) / (2 rdr) N(r) number of atoms in annulus r+dr with 2 rdr being the annulus area Radial distribution function: g(r) = (r)/ at at average areal number density The radial distribution function of a noncrystalline material damps and broadens as a function of r with g(r) tending to unity. 4

. The liquid structure factor Consider mono-atomic or mono-molecular system: I(Q) = f(q) 2 n exp(iqr n ) m exp(iqr m ) = f(q) 2 n m exp iq(r n -r m ) with f(q) formfactor separate summations I(Q) = Nf(Q) 2 + f(q) 2 n m n exp iq(r n -r m ) Replace m n sum by integral and separate out average density at : I(Q) = Nf(Q) 2 + f(q) 2 n V [ n (r nm )- at )exp iq(r n -r m )dv m + f(q) 2 at n V exp iq(r n -r m ) dv m I SRO (Q) I SAXS (Q) measures short-range order since contributes only for Q 0 n (r nm ) at after few atomic spacings (otherwise oscillates to zero) and the term oscillates then towards zero where n (r nm )dv m is the number of atoms in volume element dv m located at r m -r n relative to r n. 5

. SAXS (Form Factor) The form factor of isolated particles I SAXS (Q) = ( sl,p - sl,0 ) 2 V exp iqr dvp 2 where sl,p, sl,0 are the scattering length densities of the particle (p) and solvent (0) and V p is the volume of the particle. Using the particle form factor one finds F(Q) = 1/V p Vp exp iqr dvp I SAXS (Q) = 2 V 2 p F(Q) 2 with = ( sl,p - sl,0 ) The formfactor depends on the morphology (size and shape of the particles) and can be evaluated analytically only in a few cases: For a sphere with radius R one finds: F(Q) = 1/V p 0 R 0 2 0 exp iqr cos( ) r 2 sin d d dr = 1/V p 0 R 4 sin(qr)/qr r 2 dr = 3 [sin(qr) Qrcos(QR)] / [(QR) 3 ] = 3 J 1 (QR) / QR with J 1 (x) : Bessel function of the first kind. For Q 0: F(Q) 2 =1 and I SAXS (Q) = = 2 V 2 p 6

. Form Factor for monodisperse spheres Monodisperse speres of radius 10nm and 20 nm 7

. Experimental Set-up (SAXS) Consider objects (nano-structures) of sub-μm size 8

. Form Factor for monodisperse spheres 9

. The small Q limit: Guinier Regime For QR 0: F(Q) 3/(QR )3 [QR (QR) 3 /6 +(QR) 5 /120 - -QR(1-(QR) 2 /2 + (QR) 4 /24 - )] 1 (QR) 2 /10 Thus: I SAXS (Q) 2 V 2 p [1 (QR) 2 /10]2 2 V 2 p [1 (QR) 2 /5] Thus the QR 0 limit can be used to determine the particle radius R via: I SAXS (Q) 2 V 2 p exp ( (QR) 2 /5) QR<<1 [exp(-x) = 1-x] Thus: plotting ln [I SAXS (Q)] vs. Q 2 reveals a slope R 2 /5 R 10

. The large Q limit: Porod Regime For QR >> 1: wavelength small compared to particle size F(Q) 3/[sin(QR)/(QR) 3 cos(qr) / (QR) 2 )] 3 [ cos(qr) / (QR) 2 ] When QR >> 1, cos 2 (x) oscillates towards ½ and I SAXS (Q) = 9 2 V 2 p <cos 2 (QR)> /(QR) 4 = 9 2 V 2 p / 2(QR) 4 Thus: I SAXS (Q) 1/Q 4 11

. Radius of Gyration Radius of gyration: root mean square distance from the particle s center R G = 1/V p Vp r 2 dv p R G 2 = Vp sl,p (r) r 2 dv p / Vp sl,p (r) dv p For uniform spheres: R G2 = 3/5 R 2 I SAXS (Q) 2 V 2 p exp ( QR G ) 2 /3 12

. Formfactor and Particle Shape F(Q) = 1/V p Vp exp iqr dvp F(Q) 2 RG Porod Exp Sphere (d=3) (3J 1 (QR)/QR) 2 sqrt(3/5)r -4 Disc (d=2) 2/(QR)2x(1-J 1 (2QR)/QR) sqrt(1/2)r -2 Rod (d=1) 2 Si(QL)/QL-4sin 2 (QL/2)/(QL) 2 sqrt(1/12)l -1 with: Si(x) 0 x sint/t dt 13

. Polydispersity Realistic ensembles of particles display a certain distrubution of particle sizes that shall be discribed by a distribution function D(R). Thus the scattering intensity may be written as I SAXS (Q) = 2 0 D(R) V 2 p F(Q,R) 2 dr with 0 D(R) dr =1. A frequently used distribution function is the so-called Schultz function, where z is a measure of the polydispersity: D(R) = [(z+1)/<r>] z+1 R z /( (z+1) exp( -(z+1)r/<r>) 14

. Structure Factor Interparticle interactions: S(Q): structure factor Hard sphere structure factor: V(r) = 0 for r d V(r) = for r<d I SAXS (Q) = 2 V 2 p F(Q) 2 S(Q) S(Q) = 1/nN < i,j N exp(iq(r i -R j ))> = d 3 r exp(iqr) g(r) 15

. SAXS experiment measure I(Q) modell F(Q) for spherical particles I(Q)=F(Q) S(Q) get and modell S(Q) 16