Important Formulas. Expectation: E (X) = Σ [X P(X)] = n p q σ = n p q. P(X) = n! X1! X 2! X 3! X k! p X. Chapter 6 The Normal Distribution.

Similar documents
Describing the Relation between Two Variables

Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc.

Agenda: Recap. Lecture. Chapter 12. Homework. Chapt 12 #1, 2, 3 SAS Problems 3 & 4 by hand. Marquette University MATH 4740/MSCS 5740

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

Common Large/Small Sample Tests 1/55

S Y Y = ΣY 2 n. Using the above expressions, the correlation coefficient is. r = SXX S Y Y

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

Regression, Inference, and Model Building

Sample Size Determination (Two or More Samples)

[ ] ( ) ( ) [ ] ( ) 1 [ ] [ ] Sums of Random Variables Y = a 1 X 1 + a 2 X 2 + +a n X n The expected value of Y is:

1 Inferential Methods for Correlation and Regression Analysis

Formulas and Tables for Gerstman

Stat 200 -Testing Summary Page 1

Regression. Correlation vs. regression. The parameters of linear regression. Regression assumes... Random sample. Y = α + β X.

Statistics 20: Final Exam Solutions Summer Session 2007

Grant MacEwan University STAT 151 Formula Sheet Final Exam Dr. Karen Buro

Final Review. Fall 2013 Prof. Yao Xie, H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech

Overview. p 2. Chapter 9. Pooled Estimate of. q = 1 p. Notation for Two Proportions. Inferences about Two Proportions. Assumptions

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Statistics

Grant MacEwan University STAT 252 Dr. Karen Buro Formula Sheet

Class 23. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Rule of probability. Let A and B be two events (sets of elementary events). 11. If P (AB) = P (A)P (B), then A and B are independent.

( )( ) χ = where Ei = npi. χ = where. : At least one proportion differs significantly. H0 : The two classifications are independent H

Mathematical Notation Math Introduction to Applied Statistics

S T A T R a c h e l L. W e b b, P o r t l a n d S t a t e U n i v e r s i t y P a g e 1. = Population Variance

- E < p. ˆ p q ˆ E = q ˆ = 1 - p ˆ = sample proportion of x failures in a sample size of n. where. x n sample proportion. population proportion

(all terms are scalars).the minimization is clearer in sum notation:

Class 27. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

Comparing your lab results with the others by one-way ANOVA

Lecture 8: Non-parametric Comparison of Location. GENOME 560, Spring 2016 Doug Fowler, GS

Good luck! School of Business and Economics. Business Statistics E_BK1_BS / E_IBA1_BS. Date: 25 May, Time: 12:00. Calculator allowed:

Chapter 22. Comparing Two Proportions. Copyright 2010 Pearson Education, Inc.

Chapter 22. Comparing Two Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Worksheet 23 ( ) Introduction to Simple Linear Regression (continued)

Correlation. Two variables: Which test? Relationship Between Two Numerical Variables. Two variables: Which test? Contingency table Grouped bar graph

TAMS24: Notations and Formulas

STAT431 Review. X = n. n )

MidtermII Review. Sta Fall Office Hours Wednesday 12:30-2:30pm Watch linear regression videos before lab on Thursday

Open book and notes. 120 minutes. Cover page and six pages of exam. No calculators.

INSTRUCTIONS (A) 1.22 (B) 0.74 (C) 4.93 (D) 1.18 (E) 2.43

Inferential Statistics. Inference Process. Inferential Statistics and Probability a Holistic Approach. Inference Process.

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen)

STATISTICAL INFERENCE

Chapters 5 and 13: REGRESSION AND CORRELATION. Univariate data: x, Bivariate data (x,y).

ST 305: Exam 3 ( ) = P(A)P(B A) ( ) = P(A) + P(B) ( ) = 1 P( A) ( ) = P(A) P(B) σ X 2 = σ a+bx. σ ˆp. σ X +Y. σ X Y. σ X. σ Y. σ n.

Chapter 1 (Definitions)

Properties and Hypothesis Testing

GG313 GEOLOGICAL DATA ANALYSIS

Linear Regression Models

Dr. Maddah ENMG 617 EM Statistics 11/26/12. Multiple Regression (2) (Chapter 15, Hines)

Simple Regression. Acknowledgement. These slides are based on presentations created and copyrighted by Prof. Daniel Menasce (GMU) CS 700

October 25, 2018 BIM 105 Probability and Statistics for Biomedical Engineers 1

Statistics Lecture 27. Final review. Administrative Notes. Outline. Experiments. Sampling and Surveys. Administrative Notes

Exam II Review. CEE 3710 November 15, /16/2017. EXAM II Friday, November 17, in class. Open book and open notes.

Samples from Normal Populations with Known Variances

t distribution [34] : used to test a mean against an hypothesized value (H 0 : µ = µ 0 ) or the difference

Sampling Distributions, Z-Tests, Power

Continuous Data that can take on any real number (time/length) based on sample data. Categorical data can only be named or categorised

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

Introduction to Econometrics (3 rd Updated Edition) Solutions to Odd- Numbered End- of- Chapter Exercises: Chapter 3

MATH/STAT 352: Lecture 15

Module 1 Fundamentals in statistics

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

Final Examination Solutions 17/6/2010

3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N.

BIOS 4110: Introduction to Biostatistics. Breheny. Lab #9

M1 for method for S xy. M1 for method for at least one of S xx or S yy. A1 for at least one of S xy, S xx, S yy correct. M1 for structure of r

Quick Review of Probability

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01

CHAPTER SUMMARIES MAT102 Dr J Lubowsky Page 1 of 13 Chapter 1: Introduction to Statistics

Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency

Read through these prior to coming to the test and follow them when you take your test.

Comparing Two Populations. Topic 15 - Two Sample Inference I. Comparing Two Means. Comparing Two Pop Means. Background Reading

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistics. Chapter 10 Two-Sample Tests. Copyright 2013 Pearson Education, Inc. publishing as Prentice Hall. Chap 10-1

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

11 Correlation and Regression

Lecture 7: Non-parametric Comparison of Location. GENOME 560, Spring 2016 Doug Fowler, GS

independence of the random sample measurements, we have U = Z i ~ χ 2 (n) with σ / n 1. Now let W = σ 2. We then have σ 2 (x i µ + µ x ) 2 i =1 ( )

(7 One- and Two-Sample Estimation Problem )

November 2002 Course 4 solutions

Lecture 7: Non-parametric Comparison of Location. GENOME 560 Doug Fowler, GS

Random Variables, Sampling and Estimation

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions

Linear Regression Analysis. Analysis of paired data and using a given value of one variable to predict the value of the other

Correlation Regression

SOLUTIONS y n. n 1 = 605, y 1 = 351. y1. p y n. n 2 = 195, y 2 = 41. y p H 0 : p 1 = p 2 vs. H 1 : p 1 p 2.

Important Concepts not on the AP Statistics Formula Sheet

UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL/MAY 2009 EXAMINATIONS ECO220Y1Y PART 1 OF 2 SOLUTIONS

Probability and statistics: basic terms

Correlation and Regression

STAC51: Categorical data Analysis

This chapter focuses on two experimental designs that are crucial to comparative studies: (1) independent samples and (2) matched pair samples.

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

Lecture 9: Independent Groups & Repeated Measures t-test

TMA4245 Statistics. Corrected 30 May and 4 June Norwegian University of Science and Technology Department of Mathematical Sciences.

Stat 139 Homework 7 Solutions, Fall 2015

Transcription:

Importat Formulas Chapter 3 Data Descriptio Mea for idividual data: X = _ ΣX Mea for grouped data: X= _ Σf X m Stadard deviatio for a sample: _ s = Σ(X _ X ) or s = 1 (Σ X ) (Σ X ) ( 1) Stadard deviatio for grouped data: _ s = _ (Σf Xm ) (Σf Xm ) ( 1) rage Rage rule of thumb: s _ 4 (Shortcut formula) Chapter 4 Probability ad Coutig Rules Additio rule 1 (mutually exclusive evets): P(A or B ) = P(A) + P(B) Additio rule (evets ot mutually exclusive): P(A or B) = P(A) + P(B ) P(A ad B) Multiplicatio rule 1 (idepedet evets): P(A ad B) = P(A) P(B) Multiplicatio rule (depedet evets): P(A ad B) = P(A) P(B A) Coditioal probability: P(B A) = P(A ad B) P(A) Complemetary evets: P( E ) = 1 P(E ) Fudametal coutig rule: Total umber of outcomes of a sequece whe each evet has a differet umber of possibilities: k 1 k k 3 k Permutatio rule: Number of permutatios of objects takig r at a time is P r = _! ( r)! Permutatio rule of objects with r 1 objects idetical, r objects idetical, etc.! r1! r! r p! Combiatio rule: Number of combiatios of r objects selected from objects is C r = _! ( r)!r! Chapter 5 Discrete Probability Distributios Mea for a probability distributio: μ = Σ [X P(X)] Variace ad stadard deviatio for a probability distributio: σ = Σ [X P(X)] μ _ σ= Σ [X P(X)] μ Expectatio: E (X) = Σ [X P(X)] Biomial probability: P(X ) = _! ( X )!X! px q X Mea for biomial distributio: μ = p Variace ad stadard deviatio for the biomial distributio: σ _ = p q σ = p q Multiomial probability: P(X) = _! X1! X! X 3! X k! p X 1 1 X p X p 3 3 X p k k Poisso probability: P(X; λ) = e λ λ X X! X = 0, 1,,... Hypergeometric probability: P(X ) = ac X b C X a+bc Geometric probability: P() = p(1 p) 1 is the umber of the trial i which the first success occurs ad p is the probability of a success Chapter 6 The Normal Distributio Stadard score: Populatio: z = _ X μ σ or Sample: z = X X s Mea of sample meas: μ _ X = μ Stadard error of the mea: σ _ X = σ X μ Cetral limit theorem formula: z = σ Chapter 7 Cofidece Itervals ad Sample Size z cofidece iterval for meas: X zα ( σ ) < μ < X + z α ( t cofidece iterval for meas: σ ) X t α ( s ) < μ < X+ t α ( s ) Sample size for meas: = ( z α σ E ) E is the margi of error Cofidece iterval for a proportio: ˆp ˆq ˆp (z α ) < p < ˆp + (z ˆp ˆq α )

z α Sample size for a proportio: = p ˆ q ˆ ( _ E ) p ˆ = X ad ˆ q = 1 p ˆ Cofidece iterval for variace: ( 1)s < σ ( 1)s < χ right χ left Cofidece iterval for stadard deviatio: ( 1)s < σ < ( 1)s χ right χ left Chapter 8 Hypothesis Testig X μ z test: z = for ay value. If < 30, σ populatio must be ormally distributed. t test: t = X μ (d.f. = 1) s p p z test for proportios: z = pq Chi-square test for a sigle variace: ( 1)s = (d.f. = 1) ˆ Chapter 9 Testig the Differece Betwee Two Meas, Two Proportios, ad Two Variaces z test for comparig two meas (idepedet samples): z = ( X 1 _ X ) (μ 1 μ ) _ σ 1 + _ σ 1 Formula for the cofidece iterval for differece of two meas (large samples): ( X 1 X ) z α _ σ 1 1 + _ σ < μ 1 μ σ < ( X 1 X ) + z α _ σ 1 1 + _ σ Formula for the cofidece iterval for differece of two meas (small idepedet samples, variaces uequal): _ ( X 1 X ) t α s 1 + s 1 < μ 1 μ _ < ( X 1 X ) + t α s 1 + s 1 (d.f. = smaller of 1 1 ad 1) t test for comparig two meas for depedet samples: D μ t = D s D D = _ ΣD s D = ΣD (ΣD) (d.f. = 1) ( 1) ad Formula for cofidece iterval for the mea of the differece for depedet samples: s D t α D < μ D < D + t α s D (d.f. = 1) z test for comparig two proportios: ( p ˆ z = 1 p ˆ ) (p 1 p ) _ p _ q ( 1 + 1 1 ) p = _ X 1 + X 1 + p ˆ 1 = _ X 1 1 X _ q = 1 p p ˆ = _ Formula for the cofidece iterval for the differece of two proportios: _ p ˆ ( p ˆ 1 p ˆ ) z α 1 q ˆ 1 p ˆ + ˆ q 1 < p 1 p _ p ˆ < ( p ˆ 1 p ˆ ) + z α 1 q ˆ 1 p ˆ + ˆ q 1 F test for comparig two variaces: F = s 1 s 1 is the s larger variace ad d.f.n. = 1 1, d.f.d. = 1 t test for comparig two meas (idepedet samples, variaces ot equal): t = ( X 1 _ X ) (μ 1 μ ) _ s 1 1 + _ s (d.f. = the smaller of 1 1 or 1)

Chapter 10 Correlatio ad Regressio Correlatio coefficiet: (Σ xy) (Σ x)(σy) r = [(Σ x ) (Σ x) ][(Σ y ) (Σ y) ] t test for correlatio coefficiet: t = r 1 r (d.f. = ) The regressio lie equatio: yʹ = a + bx (Σy)(Σx a = _ ) (Σx)(Σxy) (Σx ) (Σx) (Σxy) (Σx)(Σy) b = _ (Σx ) (Σx) Coefficiet of determiatio: r explaied variatio = total variatio Stadard error of estimate: _ s est = Σy a Σy b Σxy Predictio iterval for y: yʹ t α s est 1 + 1 + (x _ X ) Σx (Σx) < y < yʹ + t α s est 1 + 1 + (x _ X ) Σx (Σx) (d.f. = ) Formula for the multiple correlatio coefficiet: R = _ ryx 1 + ryx r yx1 r yx r x1 x 1 rx 1 x Formula for the F test for the multiple correlatio coefficiet: F = _ R k (1 R ) ( k 1) (d.f.n. = k ad d.f.d. = k 1) Formula for the adjusted R : R adj = 1 [ _ (1 R )( 1) k 1 ] Chapter 11 Other Chi-Square Tests Chi-square test for goodess-of-fit: = (O E ) E (d.f. = o. of categories 1) Chi-square test for idepedece ad homogeeity of proportios: = (O E ) E [d.f. = (rows 1)(colums 1)] Chapter 1 Aalysis of Variace ANOVA test: F = _ s B X GM = _ ΣX s W N d.f.n. = k 1 N = 1 + + + k d.f.d. = N k k = umber of groups s Σ B = i ( X i X GM ) k 1 s W = _ Σ( i 1)s i Σ( i 1) ( X i X j ) Scheffé test: F S = _ ad sw (1 i + 1 j ) Fʹ = (k 1)(C.V.) X i X j Tukey test: q = s W Formulas for two-way ANOVA: SS MS A = _ A a 1 F A = _ MS A MS W SS MS B = _ B b 1 F B = _ MS B MS W MS A B = _ SS A B F A B = MS A B (a 1)(b 1) MS W SS MS W = _ W ab( 1)

Chapter 13 Noparametric Statistics (X + 0.5) 0.5 z test value i the sig test: z = = sample size (greater tha or equal to 6) X = smaller umber of + or sigs R μ Wilcoxo rak sum test: z = R σ R μ R = _ 1 ( 1 + + 1) _ σ R = _ 1 ( 1 + + 1) 1 R = sum of the raks for the smaller sample size ( 1 ) 1 = smaller of the sample sizes = larger of the sample sizes 1 10 ad 10 w s _ ( + 1) Wilcoxo siged-rak test: z = 4 ( + 1)( + 1) 4 = umber of pairs the differece is ot 0 ad 30 w s = smaller sum i absolute value of the siged raks Kruskal-Wallis test: H = _ 1 N(N + 1) ( _ R 1 + _ R 1 + + _ R k k ) 3(N + 1) R 1 = sum of the raks of sample 1 1 = size of sample 1 R = sum of the raks of sample = size of sample R k = sum of the raks of sample k k = size of sample k N = 1 + + + k k = umber of samples Spearma rak correlatio coefficiet: r s = 1 6Σd ( 1) d = differece i the raks = umber of data pairs Procedure Table Solvig Hypothesis-Testig Problems (Traditioal Method) Step 1 State the hypotheses ad idetify the claim. Step Fid the critical value(s) from the appropriate table i Appedix A. Step 3 Compute the test value. Step 4 Make the decisio to reject or ot reject the ull hypothesis. Step 5 Summarize the results. Procedure Table Solvig Hypothesis-Testig Problems (P-Value Method) Step 1 State the hypotheses ad idetify the claim. Step Compute the test value. Step 3 Fid the P-value. Step 4 Make the decisio. Step 5 Summarize the results.

TABLE E The Stadard Normal Distributio Cumulative Stadard Normal Distributio z.00.01.0.03.04.05.06.07.08.09 3.4.0003.0003.0003.0003.0003.0003.0003.0003.0003.000 3.3.0005.0005.0005.0004.0004.0004.0004.0004.0004.0003 3..0007.0007.0006.0006.0006.0006.0006.0005.0005.0005 3.1.0010.0009.0009.0009.0008.0008.0008.0008.0007.0007 3.0.0013.0013.0013.001.001.0011.0011.0011.0010.0010.9.0019.0018.0018.0017.0016.0016.0015.0015.0014.0014.8.006.005.004.003.003.00.001.001.000.0019.7.0035.0034.0033.003.0031.0030.009.008.007.006.6.0047.0045.0044.0043.0041.0040.0039.0038.0037.0036.5.006.0060.0059.0057.0055.0054.005.0051.0049.0048.4.008.0080.0078.0075.0073.0071.0069.0068.0066.0064.3.0107.0104.010.0099.0096.0094.0091.0089.0087.0084..0139.0136.013.019.015.01.0119.0116.0113.0110.1.0179.0174.0170.0166.016.0158.0154.0150.0146.0143.0.08.0.017.01.007.00.0197.019.0188.0183 1.9.087.081.074.068.06.056.050.044.039.033 1.8.0359.0351.0344.0336.039.03.0314.0307.0301.094 1.7.0446.0436.047.0418.0409.0401.039.0384.0375.0367 1.6.0548.0537.056.0516.0505.0495.0485.0475.0465.0455 1.5.0668.0655.0643.0630.0618.0606.0594.058.0571.0559 1.4.0808.0793.0778.0764.0749.0735.071.0708.0694.0681 1.3.0968.0951.0934.0918.0901.0885.0869.0853.0838.083 1..1151.1131.111.1093.1075.1056.1038.100.1003.0985 1.1.1357.1335.1314.19.171.151.130.110.1190.1170 1.0.1587.156.1539.1515.149.1469.1446.143.1401.1379 0.9.1841.1814.1788.176.1736.1711.1685.1660.1635.1611 0.8.119.090.061.033.005.1977.1949.19.1894.1867 0.7.40.389.358.37.96.66.36.06.177.148 0.6.743.709.676.643.611.578.546.514.483.451 0.5.3085.3050.3015.981.946.91.877.843.810.776 0.4.3446.3409.337.3336.3300.364.38.319.3156.311 0.3.381.3783.3745.3707.3669.363.3594.3557.350.3483 0..407.4168.419.4090.405.4013.3974.3936.3897.3859 0.1.460.456.45.4483.4443.4404.4364.435.486.447 0.0.5000.4960.490.4880.4840.4801.4761.471.4681.4641 For z values less tha 3.49, use 0.0001. z 0

TABLE E (cotiued ) Cumulative Stadard Normal Distributio z.00.01.0.03.04.05.06.07.08.09 0.0.5000.5040.5080.510.5160.5199.539.579.5319.5359 0.1.5398.5438.5478.5517.5557.5596.5636.5675.5714.5753 0..5793.583.5871.5910.5948.5987.606.6064.6103.6141 0.3.6179.617.655.693.6331.6368.6406.6443.6480.6517 0.4.6554.6591.668.6664.6700.6736.677.6808.6844.6879 0.5.6915.6950.6985.7019.7054.7088.713.7157.7190.74 0.6.757.791.734.7357.7389.74.7454.7486.7517.7549 0.7.7580.7611.764.7673.7704.7734.7764.7794.783.785 0.8.7881.7910.7939.7967.7995.803.8051.8078.8106.8133 0.9.8159.8186.81.838.864.889.8315.8340.8365.8389 1.0.8413.8438.8461.8485.8508.8531.8554.8577.8599.861 1.1.8643.8665.8686.8708.879.8749.8770.8790.8810.8830 1..8849.8869.8888.8907.895.8944.896.8980.8997.9015 1.3.903.9049.9066.908.9099.9115.9131.9147.916.9177 1.4.919.907.9.936.951.965.979.99.9306.9319 1.5.933.9345.9357.9370.938.9394.9406.9418.949.9441 1.6.945.9463.9474.9484.9495.9505.9515.955.9535.9545 1.7.9554.9564.9573.958.9591.9599.9608.9616.965.9633 1.8.9641.9649.9656.9664.9671.9678.9686.9693.9699.9706 1.9.9713.9719.976.973.9738.9744.9750.9756.9761.9767.0.977.9778.9783.9788.9793.9798.9803.9808.981.9817.1.981.986.9830.9834.9838.984.9846.9850.9854.9857..9861.9864.9868.9871.9875.9878.9881.9884.9887.9890.3.9893.9896.9898.9901.9904.9906.9909.9911.9913.9916.4.9918.990.99.995.997.999.9931.993.9934.9936.5.9938.9940.9941.9943.9945.9946.9948.9949.9951.995.6.9953.9955.9956.9957.9959.9960.9961.996.9963.9964.7.9965.9966.9967.9968.9969.9970.9971.997.9973.9974.8.9974.9975.9976.9977.9977.9978.9979.9979.9980.9981.9.9981.998.998.9983.9984.9984.9985.9985.9986.9986 3.0.9987.9987.9987.9988.9988.9989.9989.9989.9990.9990 3.1.9990.9991.9991.9991.999.999.999.999.9993.9993 3..9993.9993.9994.9994.9994.9994.9994.9995.9995.9995 3.3.9995.9995.9995.9996.9996.9996.9996.9996.9996.9997 3.4.9997.9997.9997.9997.9997.9997.9997.9997.9997.9998 For z values greater tha 3.49, use 0.9999. 0 z

TABLE F The t Distributio Cofidece itervals 80% 90% 95% 98% 99% Oe tail, α 0.10 0.05 0.05 0.01 0.005 d.f. Two tails, α 0.0 0.10 0.05 0.0 0.01 1 3.078 6.314 1.706 31.81 63.657 1.886.90 4.303 6.965 9.95 3 1.638.353 3.18 4.541 5.841 4 1.533.13.776 3.747 4.604 5 1.476.015.571 3.365 4.03 6 1.440 1.943.447 3.143 3.707 7 1.415 1.895.365.998 3.499 8 1.397 1.860.306.896 3.355 9 1.383 1.833.6.81 3.50 10 1.37 1.81.8.764 3.169 11 1.363 1.796.01.718 3.106 1 1.356 1.78.179.681 3.055 13 1.350 1.771.160.650 3.01 14 1.345 1.761.145.64.977 15 1.341 1.753.131.60.947 16 1.337 1.746.10.583.91 17 1.333 1.740.110.567.898 18 1.330 1.734.101.55.878 19 1.38 1.79.093.539.861 0 1.35 1.75.086.58.845 1 1.33 1.71.080.518.831 1.31 1.717.074.508.819 3 1.319 1.714.069.500.807 4 1.318 1.711.064.49.797 5 1.316 1.708.060.485.787 6 1.315 1.706.056.479.779 7 1.314 1.703.05.473.771 8 1.313 1.701.048.467.763 9 1.311 1.699.045.46.756 30 1.310 1.697.04.457.750 3 1.309 1.694.037.449.738 34 1.307 1.691.03.441.78 36 1.306 1.688.08.434.719 38 1.304 1.686.04.49.71 40 1.303 1.684.01.43.704 45 1.301 1.679.014.41.690 50 1.99 1.676.009.403.678 55 1.97 1.673.004.396.668 60 1.96 1.671.000.390.660 65 1.95 1.669 1.997.385.654 70 1.94 1.667 1.994.381.648 75 1.93 1.665 1.99.377.643 80 1.9 1.664 1.990.374.639 90 1.91 1.66 1.987.368.63 100 1.90 1.660 1.984.364.66 00 1.86 1.653 1.97.345.601 300 1.84 1.650 1.968.339.59 400 1.84 1.649 1.966.336.588 500 1.83 1.648 1.965.334.586 (z) 1.8 a 1.645 b 1.960.36 c.576 d a This value has bee rouded to 1.8 i the textbook. b This value has bee rouded to 1.65 i the textbook. c This value has bee rouded to.33 i the textbook. d This value has bee rouded to.58 i the textbook. Oe tail α Two tails α α t t +t

TABLE G The Chi-Square Distributio α Degrees of freedom 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.05 0.01 0.005 1 0.001 0.004 0.016.706 3.841 5.04 6.635 7.879 0.010 0.00 0.051 0.103 0.11 4.605 5.991 7.378 9.10 10.597 3 0.07 0.115 0.16 0.35 0.584 6.51 7.815 9.348 11.345 1.838 4 0.07 0.97 0.484 0.711 1.064 7.779 9.488 11.143 13.77 14.860 5 0.41 0.554 0.831 1.145 1.610 9.36 11.071 1.833 15.086 16.750 6 0.676 0.87 1.37 1.635.04 10.645 1.59 14.449 16.81 18.548 7 0.989 1.39 1.690.167.833 1.017 14.067 16.013 18.475 0.78 8 1.344 1.646.180.733 3.490 13.36 15.507 17.535 0.090 1.955 9 1.735.088.700 3.35 4.168 14.684 16.919 19.03 1.666 3.589 10.156.558 3.47 3.940 4.865 15.987 18.307 0.483 3.09 5.188 11.603 3.053 3.816 4.575 5.578 17.75 19.675 1.90 4.75 6.757 1 3.074 3.571 4.404 5.6 6.304 18.549 1.06 3.337 6.17 8.99 13 3.565 4.107 5.009 5.89 7.04 19.81.36 4.736 7.688 9.819 14 4.075 4.660 5.69 6.571 7.790 1.064 3.685 6.119 9.141 31.319 15 4.601 5.9 6.6 7.61 8.547.307 4.996 7.488 30.578 3.801 16 5.14 5.81 6.908 7.96 9.31 3.54 6.96 8.845 3.000 34.67 17 5.697 6.408 7.564 8.67 10.085 4.769 7.587 30.191 33.409 35.718 18 6.65 7.015 8.31 9.390 10.865 5.989 8.869 31.56 34.805 37.156 19 6.844 7.633 8.907 10.117 11.651 7.04 30.144 3.85 36.191 38.58 0 7.434 8.60 9.591 10.851 1.443 8.41 31.410 34.170 37.566 39.997 1 8.034 8.897 10.83 11.591 13.40 9.615 3.671 35.479 38.93 41.401 8.643 9.54 10.98 1.338 14.04 30.813 33.94 36.781 40.89 4.796 3 9.6 10.196 11.689 13.091 14.848 3.007 35.17 38.076 41.638 44.181 4 9.886 10.856 1.401 13.848 15.659 33.196 36.415 39.364 4.980 45.559 5 10.50 11.54 13.10 14.611 16.473 34.38 37.65 40.646 44.314 46.98 6 11.160 1.198 13.844 15.379 17.9 35.563 38.885 41.93 45.64 48.90 7 11.808 1.879 14.573 16.151 18.114 36.741 40.113 43.194 46.963 49.645 8 1.461 13.565 15.308 16.98 18.939 37.916 41.337 44.461 48.78 50.993 9 13.11 14.57 16.047 17.708 19.768 39.087 4.557 45.7 49.588 5.336 30 13.787 14.954 16.791 18.493 0.599 40.56 43.773 46.979 50.89 53.67 Source: values calculated with Excel. α χ