Elasto-inertial turbulence 1 4 2

Similar documents
Temperature Memory Effect in Amorphous Shape Memory Polymers. Kai Yu 1, H. Jerry Qi 1, *

On a Truncated Erlang Queuing System. with Bulk Arrivals, Balking and Reneging

Manipulator Dynamics. Amirkabir University of Technology Computer Engineering & Information Technology Department

Module 1 : The equation of continuity. Lecture 5: Conservation of Mass for each species. & Fick s Law

INTRODUCTION TO INERTIAL CONFINEMENT FUSION

Numerical Simulation of the Eddy System on the Basis of the Boltzmann Equation

8 The independence problem

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

Simple Linear Regression Analysis

A Method for Damping Estimation Based On Least Square Fit

Turbulent Flow. Turbulent Flow

Carbonyl Groups. University of Chemical Technology, Beijing , PR China;

Diode DC Non-ideal Characteristics

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

Fourth Order Four-Stage Diagonally Implicit Runge-Kutta Method for Linear Ordinary Differential Equations ABSTRACT INTRODUCTION

EVALUATION OF PERFORMANCE MEASURES OF FMS Bottleneck Model. Part mix Mix of the various part or product styles produced by the system

Chapter 5 Properties of a Random Sample

T-DOF PID Controller Design using Characteristic Ratio Assignment Method for Quadruple Tank Process

Application of CLEAR-VOF method to wave and flow simulations

Numerical simulation of turbulent flow through a straight square duct using a near wall linear k ε model.

Reaction Time VS. Drug Percentage Subject Amount of Drug Times % Reaction Time in Seconds 1 Mary John Carl Sara William 5 4

Numerical and analytical model of the inclined impact of a droplet on a solid surface in a thermal spray coating process

A Result of Convergence about Weighted Sum for Exchangeable Random Variable Sequence in the Errors-in-Variables Model

Quiz 1- Linear Regression Analysis (Based on Lectures 1-14)

CH E 374 Computational Methods in Engineering Fall 2007

PHYS Look over. examples 2, 3, 4, 6, 7, 8,9, 10 and 11. How To Make Physics Pay PHYS Look over. Examples: 1, 4, 5, 6, 7, 8, 9, 10,

D. VQ WITH 1ST-ORDER LOSSLESS CODING

Theoretical background and applications of DEM. Simon Lo

3D Spectral Energetics Analysis and Rossby Wave Saturation Theory

NUMERICAL SIMULATIONS OF LOW REYNOLDS NUMBER FLOWS PAST ELASTICALLY MOUNTED CYLINDER

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

ON THE MOTION OF PLANAR BARS SYSTEMS WITH CLEARANCES IN JOINTS

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

A Study on Responces of Premixed Flames of Hydrogen, Methane and Propane having the same Adiabatic Flame Temperature to Flame Stretch

Numerical Analysis Formulae Booklet

( ) Thermal noise ktb (T is absolute temperature in kelvin, B is bandwidth, k is Boltzamann s constant) Shot noise

The Polymers Tug Back

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations.

A FINITE DIFFERENCE SCHEME FOR A FLUID DYNAMIC TRAFFIC FLOW MODEL APPENDED WITH TWO-POINT BOUNDARY CONDITION

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

1 Solution to Problem 6.40

Bayes (Naïve or not) Classifiers: Generative Approach

Likelihood Ratio, Wald, and Lagrange Multiplier (Score) Tests. Soccer Goals in European Premier Leagues

DYNAMIC ANALYSIS OF CONCRETE RECTANGULAR LIQUID STORAGE TANKS

Beam Warming Second-Order Upwind Method

This content has been downloaded from IOPscience. Please scroll down to see the full text.

TESTS BASED ON MAXIMUM LIKELIHOOD

Christel Hohenegger A simple model for ketchup-like liquid, its numerical challenges and limitations April 7, 2011

1. a. Houston Chronicle, Des Moines Register, Chicago Tribune, Washington Post

A new algorithm for the simulation of the boltzmann equation using the direct simulation monte-carlo method

System Reliability-Based Design Optimization Using the MPP-Based Dimension Reduction Method

Ahmed Elgamal. MDOF Systems & Modal Analysis

D. A. D Ippolito, J. R. Myra, and D. A. Russell Lodestar Research Corporation

Multiple Choice Test. Chapter Adequacy of Models for Regression

,...R) where r = H (1.4) + Tn + Vof. etic energy terms are: here. ZA ZB Vee = & Vnn = (1.6) (1.4) H = Te + Tn + Ven + Vee + Vnn. i A r i.

Unsteady Flow and Its Reduced-Order Modeling of A Finite-Aspect-Ratio Flapping Foil

A Helmholtz energy equation of state for calculating the thermodynamic properties of fluid mixtures

NUMERICAL ANALYSIS OF FLOW-INDUCED VIBRATION OF TWO CIRCULAR CYLINDERS IN TANDEM AT LOW REYNOLDS NUMBERS

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

The numerical simulation of compressible flow in a Shubin nozzle using schemes of Bean-Warming and flux vector splitting

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013

Application of Laplace Adomian Padé approximant to solve exponential stretching sheet problem in fluid mechanics

RECURSIVE FORMULATION FOR MULTIBODY DYNAMICS

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

Introduction to Turbulence Modeling

Runge-Kutta discontinuous Galerkin finite element method for one-dimensional multimedium compressible flow

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 6, Number 1/2005, pp

Special Instructions / Useful Data

Statistics of Random DNA

Bayesian belief networks

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

Migration Behavior of Bead-spring Dumbbell Models under Microchannel Flow from Dissipative Particle Dynamics Simulations

5 The Oldroyd-B fluid

Signal,autocorrelation -0.6

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

1. Introduction. Keywords: Dynamic programming, Economic power dispatch, Optimization, Prohibited operating zones, Ramp-rate constraints.

Events of High Polymer Activity in Drag Reducing Flows

Kernel-based Methods and Support Vector Machines

Chain Rules for Entropy

CHEMICAL EQUILIBRIA BETWEEN THE ION EXCHANGER AND GAS PHASE. Vladimir Soldatov and Eugeny Kosandrovich

CS475 Parallel Programming

X-ray vortices from nonlinear inverse Thomson scattering

Hamilton s principle for non-holonomic systems

Point Estimation: definition of estimators

Viscoelastic Flows in Abrupt Contraction-Expansions

Effects of Polymer Concentration and Molecular Weight on the Dynamics of Visco-Elasto- Capillary Breakup

Layered structures: transfer matrix formalism

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy

[ L] υ = (3) [ L] n. Q: What are the units of K in Eq. (3)? (Why is units placed in quotations.) What is the relationship to K in Eq. (1)?

Lecture 07: Poles and Zeros

Numerical simulation of sand mould manufacture for Lost Foam Casting process

Preliminary Design Efficiency Optimization of 1D Multistage Axial Flow. Compressor for a Fixed Distribution of Axial Velocities

whch make the dyamc characterstcs of teso structures are obvously dfferet from those of brdges ad hgh-rsg buldgs, so tradtoal methods of radom vbrato

Transcription:

Elato-ertal turbulece 4 Eergy trafer ad drag reducto elato-ertal turbulece lade wth elogated cotravarat ad covarat polymer 5-855 -- E-mal:mauda..af@m.ttech.ac.jp 5-855 -- E-mal:khorut@ me.ttech.ac.jp 5-855 -- E-mal:uzuk.a.ap@m.ttech.ac.jp Shu Suzuk Tokyo Ittute of Techology -- Ookayama Meguro-ku Tokyo 5-855 Kyo Horut Tokyo Ittute of Techology -- Ookayama Meguro-ku Tokyo 5-855 Ao Suzuk Tokyo Ittute of Techology -- Ookayama Meguro-ku Tokyo 5-855 We carry out umercal tudy to reveal the prmtve proce of elogato of the polymer releaed the Newtoa olvet ad how exchage th eergy betwee polymer ad olvet. We ue BDS-DNS method whch combe Browa dyamc mulato BDS wth DNS forced homogeeou otropc turbulece. Compared wth the complete affe cae α=. cotravarat more dratc DR acheved whe o-affty maxmum α=. covarat. We try kd of Weeberg umber whch defed by relaxato tme of. The hgher Weeberg umber the more drag reducto we could get. We focu o the τ j whch calculate by. We revealed the dfferece of cotravarat ad covarat eergy flow betwee polymer ad olvet.. Newto Tom Newto Lumley 969 de Gee 986 DNA 3 Vrk maxmum drag reducto MDR aymptote 4 5 6 Tom col tretch 7 rod SIS Shear Iduced Structure affe affe DNS affe 8 affe affe affe Drect Numercal Smulato BDS-DNS Wataabe et al 9 affe BDS-DNS affe affe affe P.C.Valete Weeberg W Weeberg W = 5. W = Weeberg. BDS-DNS b. Dumbbell. BDS-DNS bead Lagrage 9 x x bead affe Fg. coector vector R x x = vector Fg. Cofgurato of elatc model

9 e E l rg = x R x.. rg f 9 dr = u x u x F dt req W W τ = u x u x d rg dt req 8τ t = W t W Wα F m α. β j = δαβ δ j δ mδ t affe.5 affe lp velocty ug affe flexble α α =. 8tep ν = Re = 3 Wray 3 Ruge-Kutta alag τ τη Weeberg 5 τ =.4 W = 5. Weeberg W = Kolomogorov Newto.5 Δt =. 3/ W = τ τη col-tretch Kolomogorov S bead 83.4 u = ug u g R Rg α{s R Rg }. < α <..3. <α>=<β>=<α >=<β >= π.3.4. < > α k β k. W {k α k β k } 6πk 4 Δt #c. k.5 E f k = " f! otherwe Δt c f =.5. E f k f k t = W W u x Whte Gaua. f DNS req = LMAX 5 LMAX = η =. η a =.85 Nt = 9 lp parameter α =. rgd τ j ~ 3 9.6 3. 3. τ j = 3. 3πa a Nt {R R j reqδ j } τ Re = Bead FENE.6 3 k FENE dampg R $ "R F = kf " & rmax # f z = z.. 8 α =. α =. f 4 BDS-DNS Newto 3..7 Weeberg Weeberg. m.7 u b W = a W = 5. Fg 3. Tme evoluto of eergy dpato b Naver-Stoke.8.9 τ j u u u j p u = f t x j x Re x j x x j.8 u = x.9 x = 3 u Re b W = a W = 5. Fg 3. Tme evoluto of legth

a b Fg 3.3 P.D.F. of legth Fg 3. Fg 3.3 p.d.f. : probablty of dtrbuto fuctoa b affe 3.. 3. Q Q = 3. S k S k Ω k Ω k 3. 5 A A j j = Sk Ωkj Ωk A j [ j 3. A ] 3 Fg 3.4 Fg 3.4aFg 3.4b A ] [ A ] [ A a a [ j j j ] a a a W = 5. W = a 8 BDS-DNS α =.. Taylor 3.3 dr u = R j R 3.3 dt x τ j acotravarat α =. bcovarat α =. Fg 3.4 Vualzato of vortex heet ad tube W = 5. a α =. b α =. Fg 3.5 Cofgurato of A ] egevector o the vortex heet ad 3.5 dr u j = R j R 3.5 dt x τ [ j S Fg 3.5 3.3 d u O-XYZ A j a a a Dumbbell a R a R a R R jot-p.d.f. R R jotp.d.f. Fg3.5 R R = R R A j Fg 3.7 a R 3 a α =. b α =. Fg 3.6 Jot-p.d.f. ad R R

3 R R 4.4σ σ σ 4.3S k 4.3 P e 4.54.6 Fg 3.7 Cofgurato of A j egevector o the vortex heet ad hghly tretched 4. u τ j u P.C.Valete τ j Joho-Segalma 6 α =. α =. Oldroyd-B Oldroyd-A Dτ j! u = α τ j k u $! u # τ kj &α τ k k u $ k Dt " x k x # τ kj k " x j x & τ j 4. 4.t = τ j = Brd τ j t ν β t e t S j d ν β t r α dr d e t S k u j r u r * & x k x k ν β t r α dr d e t S k u k r u k r & x j x * 4. Horut 8 τ j ν β S j ν β { αs k S k Ω kj Ω k } 4.3 τ j 3 A j E σ σ σ S j ω P e = α τ j S j 4.5 P e ν β α [ S j S j 4 α S k S j 8 α S k S kl S lj S j A j A j ] 4.6 Ω k Ω kj S j 4.8S k S j S j S j P e = τ j S j 4ν αs k S j 4.7 D! Dt S $ # js j & = S k S j Ω k Ω kj S j 4.8 " 4.9a =. Pe P ε S k S j Valete et al. a =. Pe P ε S k S j u p.d.f. p.d.f. 5 # σ σ σ & E T τ j E ν β σ σ σ $ σ # σ σ & σ σ σ ν β α σ σ σ σ σ σ $ # σ σ ω & ν β $ σ σ ω 4.4 Fg 4. Dvo of the legth to eve rage 4

a α =. bα =. Fg 4. P.D.F. producto codtoal amplg by the legth of Fg 4.5 Dvo of the dervatve kewe to eve zoe a R R S b R R S Fg 4.3 P.D.F. decompoto of elatc eergy producto term α =. codtoal amplg by legth of a α =. b α =. Fg 4.6 P.D.F. decompoto of elatc eergy producto term codtoal amplg by S j S k a R R S b R R S Fg 4.4 P.D.F. decompoto of elatc eergy producto term α =. codtoal amplg by legth of Fg 4. Fg.4. p.d.f. Pe S j R R j 3.3 R R S Fg 4.3Fg 4.4 p.d.f. dervatve kewe S j S k p.d.f. Fg 4.5 S j S k p.d.f. Fg 4.6 5 a α =. b α =. Fg 4.7 P.D.F. decompoto of dpato rate codtoal amplg by S j S k S j S k p.d.f. Fg4.7 p.d.f.s j S k S j S k S j S k zoe4 S j S k zoe 5. Weeberg BDS-DNS

de Gee Tom BA.Some obervato o the flow of lear polymer oluto through traght tube at large Reyold umber I Proc.t Itl Cogr.Rheol.94935-4. 943-4 3 Cho H. J. Lm P. -Y.S.T. ad Cha C. K. Turbulet Drag Reducto ad Degradato of DNAPhy.Rev.Lett.8969 4 VrkP.S.Drag reducto fudametalaichej.97565-656 5 J. L. Zak J. M. ad Chara Z.New lmtg drag reducto ad velocty profle aymptote for opolymetrc addtve ytem AICHEJ. 49963544. 6 Taybor M. ad Gee P. G. D.A Cacade Theory of Drag Reducto Europhy. Lett.798659-5 7 W. K. Lee R. C. Vaelek ad A. B. Metzer Turbulet Drag Reducto polymerc Soluto Cotag Supeded Fber AIChEJ.9748-33 8 K. Horut K. Matumoto K. Fujawa Phy. of Flud 5 56 3 9 T. Wataabe T. Gotoh. Hybrd Eulera - Lagraga mulato for polymer-turbulece teracto. J. Flud Mech 77 3 : 535-575 BDS-DNS 7 C-3 3 P.C. Valete et al. The effect of vcoelatcty o the turbulet ketc eegy cacade J.Flud Mech.76 4 R. G. Gordo ad Schowalter J. Rheology 6 79-9797 3 Brd R. B. Curt C.F. Armtrog R. C. ad Haager O. Dyamc of polymer Lqud d ed. Wley New York 987 4 H.R. Warer Jr. Ph. D. The Uverty of Wco Mado 97 Id. Eg. Chem. Fudametal 379-387 97 5 T.Gotoh D. F. ad Nakao T. Velocty feld tattc homogeeou teady turbulece obtaed ug a hgh-reoluto drect umercal mulatophy.of Flud 465-8 6 K. Horut ad Y. Takag Idetfcato method for vortex heet tructure turbulet flow Phy. of Flud 7 735 7 M.W. Joho Jr. ad D. Segalma A model for vcoelatc flud behavor whch allow oaffe deformato J.No-Newtoa Flud Mech.997 6