Research Article Temperature Dependence of the Raman Frequency of an Internal Mode for SiO 2 -Moganite Close to the α-β Transition

Similar documents
Research Article Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

Temperature and pressure dependence of the Raman frequency shifts in anthracene

Research Article Scalar Form Factor of the Pion in the Kroll-Lee-Zumino Field Theory

Research Article Noncontact Measurement for Radius of Curvature of Unpolished Lens

Research Letter The Role of Fermi Resonance in Formation of Valence Band of Water Raman Scattering

Research Article Dispersion of Love Waves in a Composite Layer Resting on Monoclinic Half-Space

Research Article Coherent and Incoherent Scattering Cross Sections of Some Lead and Sodium Compounds at Angles below 10 for 241 Am Gamma Rays

Research Article Metastability of an Extended Higgs Model

Research Article Analytical Approach to Polarization Mode Dispersion in Linearly Spun Fiber with Birefringence

Research Article In-Pile 4 He Source for UCN Production at the ESS

Research Article Visible Light Communication System Using Silicon Photocell for Energy Gathering and Data Receiving

Comments on the characteristics of incommensurate modulation in quartz: discussion about a neutron scattering experiment

Experiment AM3b: Raman scattering in transparent solids and liquids

Research Article Wavelength Width Dependence of Cavity Temperature Distribution in Semiconductor Diode Laser

Research Article Resonance Raman Scattering in TlGaSe 2 Crystals

Structure and Dynamics : An Atomic View of Materials

The Boguslawski Melting Model

Research Article Polymorphs of Tolfenamic Acids: Stability Analysis Using Cluster Method

Research Article Trapped-Mode Resonance Regime of Thin Microwave Electromagnetic Arrays with Two Concentric Rings in Unit Cell

Research Article L-Stable Derivative-Free Error-Corrected Trapezoidal Rule for Burgers Equation with Inconsistent Initial and Boundary Conditions

Study of Phase Transitions by Means of Raman Scattering

Research Article Numerical Study of Flutter of a Two-Dimensional Aeroelastic System

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics

The (magnetic) Helmholtz free energy has proper variables T and B. In differential form. and the entropy and magnetisation are thus given by

CRYSTAL STRUCTURE OF Κ3Νa(SeO4)2 AT 340 Κ T. FUKAMI*

Collective behavior, from particles to fields

Research Article Analytic Approximation of Energy Resolution in Cascaded Gaseous Detectors

Research Article A Generalization of a Class of Matrices: Analytic Inverse and Determinant

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS

1. Transition dipole moment

Spectroscopy: The Study of Squiggly Lines. Reflectance spectroscopy: light absorbed at specific wavelengths corresponding to energy level transi8ons

Application of IR Raman Spectroscopy

Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods

Research Article Direct Evidence of Reduction of Cloud Water after Spreading Diatomite Particles in Stratus Clouds in Beijing, China

Ferroelectric Materials

Research Article Prediction of Materials Density according to Number of Scattered Gamma Photons Using Optimum Artificial Neural Network

Research Article Dark Energy as a Cosmological Consequence of Existence of the Dirac Scalar Field in Nature

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

Research Article Conformity Check of Thickness to the Crystal Plate λ/4(λ/2)

FTIR absorption study of hydroxyl ions in KHo(WO 4 ) 2 single crystals

Research Article Electrical Transport Properties of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10 )/Ag Tapes with Different Nanosized MgO

Research Article Design of PDC Controllers by Matrix Reversibility for Synchronization of Yin and Yang Chaotic Takagi-Sugeno Fuzzy Henon Maps

Research Article An Analysis of the Quality of Repeated Plate Load Tests Using the Harmony Search Algorithm

Vibrational Spectroscopy

Research Article Improved Estimators of the Mean of a Normal Distribution with a Known Coefficient of Variation

Research Article Thermally Stimulated Depolarization Current from HCl-Doped Ice

Roger Johnson Structure and Dynamics: Displacive phase transition Lecture 9

Ferroelectric Phenomena in Crystals

Research Article Propagation Characteristics of Oblique Incident Terahertz Wave in Nonuniform Dusty Plasma

arxiv:cond-mat/ v1 10 Jun 1994 K. M. Rabe

Review Article Nanoparticle Imaging with Polarization Interferometric Nonlinear Confocal Microscope

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W

Research Article Generalized Analytical Solutions for Nonlinear Positive-Negative Index Couplers

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Research Article Cardy-Verlinde Formula of Noncommutative Schwarzschild Black Hole

OH) 3. Institute of Experimental Physics, Wrocław University, M. Born Sq. 9, Wrocław, Poland

Supplementary Information

Department of Electronic Engineering, Ching Yun University, Jung-Li 320, Taiwan 2

Research Article New Partition Theoretic Interpretations of Rogers-Ramanujan Identities

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar

van Quantum tot Molecuul

Phase Transitions in Strontium Titanate

Symmetry. 2-D Symmetry. 2-D Symmetry. Symmetry. EESC 2100: Mineralogy 1. Symmetry Elements 1. Rotation. Symmetry Elements 1. Rotation.

Neutron and X-ray Scattering Studies

Prospects for a superradiant laser

PIPPARD RELATIONS AND THE ANALYSIS OF THE SPECIFIC HEAT FOR THE α β TRANSITION IN QUARTZ

Phase transitions induced by solid solution in stuffed derivatives of quartz: A powder synchrotron XRD study of the LiAlSiO 4 -SiO 2 join

Research Article A Note on the Solutions of the Van der Pol and Duffing Equations Using a Linearisation Method

Research Article StudyofPbTiO 3 -Based Glass Ceramics Containing SiO 2

Optical and Photonic Glasses. Lecture 18. Rayleigh and Mie Scattering, Colloidal Metals and Photo-elastic Properties. Professor Rui Almeida

Research Article The Stability of Gauss Model Having One-Prey and Two-Predators

A lattice dynamical investigation of zircon (ZrSiOJ has been carried out to obtain a

Research Article Localization and Perturbations of Roots to Systems of Polynomial Equations

A novel type of incommensurate phase in quartz: The elongated-triangle phase

Research Article Designing an Ultra-Negative Dispersion Photonic Crystal Fiber with Square-Lattice Geometry

Lecture 10 Phase transitions.

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: A high-precission static compression study

Research Article Solvability for a Coupled System of Fractional Integrodifferential Equations with m-point Boundary Conditions on the Half-Line

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

Research Article Global Existence and Boundedness of Solutions to a Second-Order Nonlinear Differential System

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Research Article A New Fractional Integral Inequality with Singularity and Its Application

Spectroscopic techniques: why, when, where,and how Dr. Roberto GIANGIACOMO

Research Article On Local Fractional Continuous Wavelet Transform

REVIEW. Theory of displacive phase transitions in minerals

T (K) Supplementary Figure 1. Temperature dependence of magnetization for different fields 0.5 T

Cauchois Johansson x-ray spectrograph for kev energy range

BEHAVIOUR OF ISOTROPIC POINT IN LiKSO 4 CRYSTALS

PHYSICAL PROPERTIES AND STRUCTURE OF FERROELECTRIC - FERROELASTIC DMAAS CRYSTALS

Received: February 22, 2015, accepted: April 17, 2015

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Dielectric Study of the Ferroelectric Phase Transition in DMAGaS Crystal

Research Article Density and Heat Capacity of Liquids from Speed of Sound

Raman and IR spectroscopy in materials science. Symmetry analysis of normal phonon modes Boriana Mihailova

Hadean diamonds in zircon from Jack Hills, Western Australia

Research Article Multiple-Decision Procedures for Testing the Homogeneity of Mean for k Exponential Distributions

Research Article Remarks on the Regularity Criterion of the Navier-Stokes Equations with Nonlinear Damping

Research Article Analytic Solution for MHD Falkner-Skan Flow over a Porous Surface

AC Conductivity and Dielectric studies of Nickel Selenate Hexahydrate Single Crystal

Transcription:

Thermodynamics Volume 2012, Article ID 892696, 4 pages doi:10.1155/2012/892696 Research Article Temperature Dependence of the Raman Frequency of an Internal Mode for SiO 2 -Moganite Close to the α-β Transition Mustafa Cem Lider and Hamit Yurtseven Department of Physics, Middle East Technical University, 06531 Ankara, Turkey Correspondence should be addressed to Hamit Yurtseven, hamit@metu.edu.tr Received 15 August 2012; Accepted 26 October 2012 Academic Editor: Mario Amzel Copyright 2012 M. C. Lider and H. Yurtseven. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The temperature dependence of the 501 cm 1 frequency of the vibrational mode is analyzed for SiO 2 -moganite. The experimental data for the heating and cooling cycles of moganite from the literature is used for our analysis. The coexistence of α-β moganite is obtained over a finite temperature interval, and the α-β moganite transition at around 570 K is studied, as observed experimentally. 1. Introduction SiO 2 -moganite has been studied using various techniques over the years since it was discovered [1, 2] and approved as a mineral species in 1999. Its structure has been determined in some previous studies [3, 4]. It exhibits a displacive phase transition from the low temperature α-moganite (monoclinic) to the high temperature β-moganite at around 573 K. Itsspacegroupintheαphase is I2/a whereas in the β phase it is Imab. During the phase transformation, hysteresis occurs for the cooling and heating cycles, which indicates a firstorder type as opposed to the α-β transition in quartz (T C = 846 K). This transition in quartz is considered to be of a second order in the presence of the soft modes [5]. It has been observed that the 207 cm 1 mode disappears completely above the α-β quartz [6]. More recently, the experimental analyses have identified a first-order character to the phase transition between α-quartz and the intermediate incommensurate phase [7 9]. In our recent study, we have calculated the temperature dependence of the Raman frequency shifts and the linewidths for the optical lattice vibrations of the 128 cm 1 and 466 cm 1 in the α-phase of quartz from the anharmonic self-energy [10];we have also calculated [11] the temperature dependence of the damping constant (Raman bandwidths) for the lattice modes of 147 cm 1 and 207 cm 1 close to the α-β transition in quartz by considering the soft mode behavior in this crystal. In regard to the SiO 2 -moganite system, there is no indication of soft mode behavior in this mineral. Using hard mode spectroscopy [12], it has been observed that the 501 cm 1 Raman mode is the highest intensity mode in moganite [13] whereas in quartz the highest intensity mode occurs at 465 cm 1. It has also been pointed out that a relatively intense mode at 463 cm 1 in moganite overlaps the 465 cm 1 mode in quartz [13]. As observed experimentally [13], the 501 cm 1 mode can be associated with the structural phase transition in moganite. Its spontaneous vibrational displacement is expected to vary linearly with the square of the order parameter, which is usually the case in the behavior of hard modes in the Raman spectra for a second-order transition [12]. In the previous study [13], the temperature dependence of the Raman frequency and bandwidth for this symmetric stretching bending vibration (501 cm 1 B 3g mode) have been measured for the α-β transition in moganite experimentally. The temperature dependence of the unit cell volume of moganite has also been measured for the α-β transition in this mineral previously [13]. In this study, we calculate the Raman frequency of this internal mode using the volume data [13] through the mode

2 Thermodynamics Table 1: Values of the coefficients for the experimental unit-cell volume [13] according to (3)fortheα-β phases of moganite. The V 1 value which was obtained by extrapolating the V(T)data[13] at around T = 303 K is also given here. V (Å 3 ) a (Å 3 ) b 10 2 (Å 3 /K) c 10 6 (Å 3 /K 2 ) V 1 (Å 3 ) Temperature interval (K) α-β phase 111.71 1.09 6.61 114.41 297.5 <T<868.3 Grüneisen parameter for the α-β transition in moganite. By determining the mode Grüneisen parameter using the vibrational frequency [13] and the unit cell volume [13] data, the Raman frequencies of the 501 cm 1 mode are predicted for the α-β transition in moganite. In Section2 we give our calculations and results. Discussion and conclusions are given in Sections 3 and 4, respectively. 2. Calculations and Results The Raman frequency ν can be calculated from the crystal volume V through the isobaric Grüneisen parameter γ p defined as ( ) ln ν/ T γ p =, (1) ln V/ T p wheret and p are the temperature and pressure, respectively. Thus, using the temperature dependence of the volume the Raman frequency can be predicted by solving (1)as [ γ p (T) = ν 0 + ν 1 exp γ p ln ( V(T) V 1 )], (2) where ν 1 and V 1 are the values of the Raman frequency and crystal volume, respectively, at a constant temperature. ν 0 represents the background frequency of the Raman mode considered. We calculated here the temperature dependence of the 501 cm 1 vibrational frequency for heating and cooling cycles of moganite using the unit-cell volume data of this crystal [13]. For this calculation, we first analyzed the unitcell volume data [13] at various temperatures for the α-β phases of moganite according to a quadratic equation V = a + bt + ct 2, (3) where a, b, andc are constants. Table 1 gives the values of those coefficients from our fit. We plot the observed unit-cell volume [13] as a function of temperature for the α-β phases of moganite according to (3) with the coefficients given in Figure 1. In order to predict the temperature dependence of the 501 cm 1 vibrational mode of moganite in the α-β phases, from the unit-cell volume data [13], we needed to determine the isothermal mode Grüneisen parameter γ p according to (2). For this determination, we used the experimental data [13] for the Raman mode of 501 cm 1 in the α-β phases of moganite. For the heating and cooling cycles of the 501 cm 1 vibrational frequency for the temperature interval of 300 to 900 K in the α-β phases of moganite, a quadratic equation ν(t) = a 0 + a 1 T + a 2 T 2 (4) Unit-cell volume (A 3 ) 116.4 116.2 116 115.8 115.6 115.4 115.2 115 114.8 114.6 114.4 114.2 Figure 1: Experimental unit-cell volume [13] as a function of temperature for the the α-β phases of moganite. Solid curve represents (3) fitted to the experimental data. was used with constants a 0, a 1,anda 2. By fitting (4) to the experimental frequencies [13], the values of the coefficients were determined for both heating and cooling cycles, as given in Table 2. Thus, from this fit of (4) to the experimental vibrational data [13] and the experimental data for the unitcell volume [13], we were able to determine the value of the isobaric mode Grüneisen parameter as γ p = 0.75 for this Raman mode. By assuming that the Grüneisen parameter (γ p ) remains constant throughout the α-β phases of moganite, the Raman frequencies of the 501 cm 1 mode were then calculated at various temperatures using the unit-cell volume data [13] according to (2). From our fitting, the background frequency was obtained as ν 0 = 0.72 cm 1 for both heating and cooling cycles in moganite. Values of V 1 and ν 1 which were obtained from the extrapolations of the V(T) andν(t) dataatt = 303 K are given in Tables 1 and 3, respectively. In Figures 2 and 3, we plot our calculated vibrational frequencies of 501 cm 1 mode as a function of temperature for the cooling and heating cycles, respectively, in the α-β phases of moganite. The observed frequency data [13] are also given in those plots. 3. Discussion We calculated here the Raman frequencies of the symmetric stretching-bending mode (B 3g ) as a function of temperature from the experimental unit-cell volume data [13] for the α-β transition in moganite, as shown in Figure 2 (cooling) and Figure 3 (heating). These figures show that our predicted frequencies of this particular internal mode agree with

Thermodynamics 3 Table 2: Values of the coefficients from the fit of (4) to the experimental data [13] for heating and cooling cycles for the vibrational frequency of 501 cm 1 in the α-β phases of moganite. Vibrational frequency ω (501 cm 1 ) a 0 (cm 1 ) a 1 10 2 (cm 1 /K) a 2 10 5 (cm 1 /K 2 ) Temperature interval (K) Heating 507.0 2.57 1.29 301.6 <T<873.8 Cooling 506.84 2.63 1.39 303.5 <T<875.3 Table 3:ValuesoftheisobaricmodeGrüneisen parameter γ p, extrapolated value ν 1 at around T = 303 K and background frequency ν 0 for the vibrational frequency indicated in the α-β phases of moganite. Vibrational frequency γ p ν 1 (cm 1 ) ν 0 (cm 1 ) 501 cm 1 0.75 500.1 0.72 v (cm 1 ) 501 500 499 498 497 496 v (cm 1 ) 501 500 499 498 497 496 495 494 Calculated Observed Figure 2: Vibrational frequency calculated as a function of temperature according to (2) for the cooling cycle in the α-β phases of moganite. Observed vibrational frequencies are also shown here. the observed frequencies [13] except in the hysteresis region where the high- and low-temperature modifications coexist over a finite transition interval. It has been suggested that there occurs an intermediate phase over a 1.3 K interval between the α and β phases in quartz [14]. The intermediate phase may also occur for the α-β transition in moganite. However, since the experimental unit-cell volume [13] does not give any indication of an intermediate phase in moganite as shown in Figure 1, the Raman frequencies of the 501 cm 1 mode which were calculated through (2) do not also show such an intermediate phase over the α-β transition in this material. This intermediate phase which can exist in moganite has been considered in quartz [14] as consisting of ordered arrays of Dauphine microtwins. However, the moganite twins result from the loss of mirror symmetry, whereas the Dauphine twins of quartz result from a loss of 2-fold symmetry along the c-axis. 495 494 Calculated Observed Figure 3: Vibrational frequency calculated as a function of temperature according to (2) for the heating cycle in the α-β phases of moganite. Observed vibrational frequencies are also shown here. As studied previously, the α-β transition in moganite is the displacive transition, and it can be associated with the internal mode of 501 cm 1, as observed experimentally [13]. It has been pointed out that the variations observed for the 501 cm 1 peak strongly support the structural transition in moganite [14]. Thus, as a hard mode the square of the Raman frequency and also of the linewidth should be associated with the order parameter linearly, as suggested previously [13]. In fact, the observed behavior of the Raman frequency for the 501 cm 1 mode, which increases with decreasing temperature (Figures 2 and 3), indicates the temperature dependence of the order parameter for the α-β transition in moganite. Also, the linewidths of this Raman mode decrease with decreasing temperature, as observed experimentally [13], which can be associated with the order parameter in moganite. As stated previously, a linear variation of the order parameter with square of the frequency (spontaneous vibrational displacement) and of the linewidth (spontaneous vibrational broadening) is considered for a second-order transition in the hard mode Raman spectroscopy [15]. In the presence of the coexistence of the α and β phases, and also a possible intermediate phase in moganite, which indicates a firstorder displacive transition the temperature dependence of the Raman frequency and of the linewidth for the 501 cm 1 mode can be examined within the framework of a secondorder transition in this mineral. In fact, we examined the temperature dependence of the Raman bandwidths of this

4 Thermodynamics mode by calculating the damping constant in terms of the order parameter below the transition temperature (T C = 573 K) for the α-β transition in moganite. By calculating the temperature dependence of the order parameter (T < T C ) from the molecular field theory [16], the Raman bandwidths of the 501 cm 1 mode were predicted using the soft mode-hard mode coupling model [17, 18] and the energy fluctuation model [19] for the α-β transition in moganite. Our calculation of the damping constant of the 501 cm 1 mode failed using both models studied since it diverges as the α-β transition temperature was approached, which was not in agreement with the observed [13] Raman bandwidths. This is due to the fact that the vibrational frequency decreases anomalously as the T C is approached from the lowtemperature phase which is essentially the soft mode behavior according to a power-law formula: ω (T C T) 1/2. (5) Our calculation indicated that the 501 cm 1 mode does not exhibit a soft mode behavior for the α-β transition in moganite. For the α-β transition in quartz, we were able to predict the divergence of the 147 cm 1 and 207 cm 1 Raman modes in the vicinity of the transition temperature (T C = 846 K) using the models considered above, as studied in our recent work [11]. We also indicated in that work [11] that the 147 cm 1 Raman mode exhibits a soft mode behavior for the α-β transition in quartz. In the case of moganite, the temperature dependence of the vibrational frequency and of the linewidth of the 501 cm 1 mode can be further investigated to explain its α-β transition. 4. Conclusions The temperature dependence of the Raman frequency for the internal mode (501 cm 1 ) was calculated using the unitcell volume data through the mode Grüneisen parameters for the α-β transition in moganite. Our calculated Raman frequencies of this mode agree with the observed data in a large temperature interval for this mineral. This shows that the observed behavior of the internal mode associated with the displacive α-β transition in moganite can be predicted adequately by the method of calculation given in this study. References [1]O.W.Flörke, J. B. Jones, and H. U. Schmincke, A new microcrystalline silica from Gran Canaria, Zeitschrift für Kristallographie, vol. 143, pp. 156 165, 1976. [2] O. W. Flörke, U. Flörke, and U. Giese, Moganite, a new microcrystalline silica-mineral, Neues Jahrbuch Für Mineralogie Abhandlungen, vol. 149, pp. 325 336, 1984. [3] G. Miehe and H. Graetsch, Crystal structure of moganite: a new structure type for silica, European Mineralogy, vol. 4, no. 4, pp. 693 706, 1992. [4] P. J. Heaney and J. E. Post, The widespread distribution of a novel silica polymorph in microcrystalline quartz varieties, Science, vol. 255, no. 5043, pp. 441 443, 1992. [5] C. V. Raman and T. M. K. Nedungadi, The α-β transformation of quartz, Nature, vol. 145, no. 3665, p. 147, 1940. [6] S. M. Shapiro, D. C. O Shea, and H. Z. Cummins, Raman scattering study of the alpha-beta phase transition in quartz, Physical Review Letters, vol. 19, no. 7, pp. 361 364, 1967. [7] P. J. Heaney and D. R. Veblen, An examination of spherulitic dubiomicrofossils in Precambrian banded iron formations using the transmission electron microscope, Precambrian Research, vol. 49, no. 3-4, pp. 355 372, 1991. [8] P. J. Heaney and D. R. Veblen, Observations of the α-β phase transition in quartz: a review of imaging and diffraction studies and some new results, American Mineralogist, vol. 76, no. 5-6, pp. 1018 1032, 1991. [9] M.A.Carpenter,E.K.H.Salje,A.Graeme-Barber,B.Wruck, M. T. Dove, and K. S. Knight, Calibration of excess thermodynamic properties and elastic constant variations associated with the α β phase transition in quartz, American Mineralogist, vol. 83, no. 1-2, pp. 2 22, 1998. [10] M. Kurt and H. Yurtseven, Temperature dependence of the Raman frequency shifts and the linewidths in the α phase of quartz, Balkan Physics Letters, vol. 19, no. 191042, pp. 362 368, 2011. [11] M. C. Lider and H. Yurtseven, Calculation of the Raman linewidths of lattice modes close to the α-β transition in quartz, High Temperature Materials and Processes. In press. [12] E. K. H. Salje, Hard mode spectroscopy: experimental studies of structural phase transitions, Phase Transitions, vol. 37, pp. 83 110, 1992. [13] P. J. Heaney, D. A. McKeown, and J. E. Post, Anomalous behavior at the I2/a to Imab phase transition in SiO 2 -moganite: an analysis using hard-mode Raman spectroscopy, American Mineralogist, vol. 92, no. 4, pp. 631 639, 2007. [14] P. J. Heaney and J. E. Post, Evidence for an I2/a to Imab phase transition in the silica polymorph moganite at 570 K, American Mineralogist, vol. 86, pp. 1358 1366, 2001. [15] M. A. Carpenter and E. K. H. Salje, Elastic anomalies in minerals due to structural phase transitions, European Journal of Mineralogy, vol. 10, no. 4, pp. 693 812, 1998. [16] M. Matsushita, Anomalous temperature dependence of the frequency and damping constant of phonons near Tλ in ammonium halides, The Chemical Physics, vol. 65, no. 1, pp. 23 28, 1976. [17] I. Laulicht and N. Luknar, Internal-mode line-broadening by proton jumps in KH 2 PO 4, Chemical Physics Letters, vol. 47, no. 2, pp. 237 240, 1977. [18] I. Laulicht, On the drastic temperature broadening of hard moderamanlinesofferroelectrickdptypecrystalsneartc, Physics and Chemistry of Solids, vol.39,no.8,pp. 901 906, 1978. [19] G. Schaack and V. Winderfeldt, Temperature behaviour of optical phonons near Tc in ferroelectric triglyicine sulphate and triglycine selenate evidence of non-linear pseudospinphonon interaction, Ferroelectrics, vol. 15, pp. 35 41, 1977.

The Scientific World Journal Gravity Photonics Condensed Matter Physics Soft Matter Aerodynamics Fluids Submit your manuscripts at International International Optics Statistical Mechanics Thermodynamics Computational Methods in Physics Solid State Physics Astrophysics Physics Research International High Energy Physics International Superconductivity Atomic and Molecular Physics Biophysics Astronomy