Radioactivity at the limits of nuclear existence

Similar documents
Particle radioactivity

Particle emission at the proton drip-line

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies

Charged-particle spectroscopy with the Optical TPC

discovery of two-proton radioactivity future studies Bertram Blank, CEN Bordeaux-Gradignan Hirschegg, january 2008

Exotic Nuclei II. Neutron-rich nuclides. Michael Thoennessen FRIB/NSCL Michigan State University

Experiments with exotic nuclei I. Thursday. Preliminaries Nuclear existence Decay modes beyond the driplines Ground-state half-lives.

Down and Up Along the Proton Dripline Proton Radioactivity Centrifugal (l=5) ) V 20 Coulomb Me( Radius (fm) Nuclear

arxiv: v1 [nucl-ex] 21 Dec 2010

Sunday Monday Thursday. Friday

PHYSICAL PROBLEMS TO BE CLARIFIED WITH THE USE OF RADIOACTIVE ION BEAMS OF THE ACCULINNA-2 SEPARATOR

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL

Role of Hexadecupole Deformation in the Shape Evolution of Neutron-rich Nd Isotopes

High-resolution study of Gamow- Teller transitions in pf-shell nuclei. Tatsuya ADACHI

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

A Comparison between Channel Selections in Heavy Ion Reactions

Decay studies of 170,171 Au, Hg, and 176 Tl

Physics opportunities with the AT-TPC. D. Bazin NSCL/MSU at ReA

Experiments with rare-isotope beams Ground-state properties. Wednesday. Nuclear masses Ground-state halflives. Friday

Direct and β-delayed multi-proton emission from atomic nuclei with a time projection chamber: the cases of 43 Cr, 45 Fe, and 51 Ni

Nuclear Structure from Decay Spectroscopy

Exotic Nuclei. Ingo Wiedenhöver, National Nuclear Physics Summer School 7/16/2007 Tallahassee, Florida

Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes

Se rp-process waiting point and the 69

Beta-decay. studies with proton-rich. rich nuclei. Bertram Blank. Université Bordeaux 1 / CENBG

What do we measure, and how do we measure it?

Charge Exchange and Weak Strength for Astrophysics

Laser Spectroscopy on Bunched Radioactive Ion Beams

Physics of neutron-rich nuclei

An α decay is a nuclear transformation in which a nucleus reduces its energy by emitting an α-particle. Z 2 X N He 2, A X X + α.

RECENTLY, a new type of radioactive decay was observed. Optical time projection chamber for imaging of two-proton decay of 45 Fe nucleus

First RIA Summer School on Exotic Beam Physics, August 12-17, Michael Thoennessen, NSCL/MSU. Lecture 1: Limits of Stability 1 A = 21

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

Two-Proton Decay Experiments at MSU

Robert Charity Washington University in St. Louis, USA. Rewriting Nuclear Physics Textbooks 30 years with radioactive Ion Beam Physics

Laser spectroscopy and resonant laser ionization atomic tools to probe the nuclear landscape. Iain Moore University of Jyväskylä, Finland

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics

* On leave from FLNR / JINR, Dubna

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

The origin of heavy elements in the solar system

Two-Proton Decay Experiments

New data on β decay of exotic nuclei close to 100 Sn:

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Nuclear astrophysics of the s- and r-process

Going beyond the traditional nuclear shell model with the study of neutron-rich (radioactive) light nuclei

Testing the validity of the Spin-orbit force Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART 1:

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering

Physics with Exotic Nuclei

Physic 492 Lecture 16

Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics.

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes

H/He burning reactions on unstable nuclei for Nuclear Astrophysics

Composite Nucleus (Activated Complex)

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011

Theoretical basics and modern status of radioactivity studies

Nuclear Isomerism. Phil Walker. University of Surrey. on the occasion of the 70th birthday of Geirr Sletten

arxiv: v2 [nucl-ex] 23 Apr 2008

Spectroscopy of fission fragments using prompt-delayed coincidence technique

THE ACCULINNA AND ACCULINNA-2 RADIOACTIVE ION BEAM FACILITY AT DUBNA: STATUS AND PERSPECTIVES

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei

Collective Excitations in Exotic Nuclei

A taste of Proton-rich nuclei. David Jenkins

Probing the Symmetries of Isobaric Analogue States M.A.Bentley University of York, UK. in collaboration with. Dave Warner

Stability of heavy elements against alpha and cluster radioactivity

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University

Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7

Nuclear Physics and Astrophysics

Fission fragment mass distributions via prompt γ -ray spectroscopy

New experiments on neutron rich r-process Ge Br isotopes at the NSCL

Measurements of liquid xenon s response to low-energy particle interactions

Opportunities with collinear laser spectroscopy at DESIR:

Nuclear and Radiation Physics

High-resolution Study of Gamow-Teller Transitions

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer

Probing the evolution of shell structure with in-beam spectroscopy

Spectroscopy of 252No to Investigate its K-isomer

RFSS: Lecture 6 Gamma Decay

ISOMER BEAMS. P.M. WALKER Department of Physics, University of Surrey, Guildford GU2 7XH, UK

Fission-yield data. Karl-Heinz Schmidt

The Search for θ13 : First Results from Double Chooz. Jaime Dawson, APC

The Nuclear Many-Body problem. Lecture 3

2007 Fall Nuc Med Physics Lectures

Nuclear spectroscopy with fast exotic beams. Alexandra Gade Professor of Physics NSCL and Michigan State University

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies

Compound Nucleus Reactions

Nuclear Physics and Astrophysics

Measurements of B(E2) transition rates in neutron rich carbon isotopes, 16 C- 20 C.

5 th ASRC International Workshop, 14 th -16 th March 2012

Gamma spectroscopy in the fermium region at SHIP

Shape coexistence in light Krypton isotopes

Experiments at NSCL. spectroscopy. A. Gade, 1/5/2011, Slide 1

Large scale shell model calculations for neutron rich fp-shell nuclei

Isospin symmetry breaking in mirror nuclei. Experimental and theoretical methods

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University

S. YOKOYAMA 1;2. Abstract. Light particle-unstable nuclei were studied along the neutron. B is a possible candidate for neutron

Gamma-ray spectroscopy I

Testing the validity of the Spin-orbit interaction Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France)

Photopion photoproduction and neutron radii

Transcription:

Radioactivity at the limits of nuclear existence Zenon Janas Institute of Experimental Physics University of Warsaw

Chart of nuclei - stable - β + - β - - α - fission - p

p and 2p radioactivty proton radioactivity two-proton radioactivity - stable - β + - β - - α - fission - p

Proton radioactivity (Z, N) (Z - 1, N ) + p

History of studies of proton radioactivity 1960 prediction of possibility of p emission 2000 1p sep. energy (kev) 1500 1000 500 0-500 -1000-1500 Z=71 150 152 154 156 158 160 Mass number 175 Lu stable

History of studies of proton radioactivity 1981 observation of 151 Lu 150 Yb + p decay E p = 1233 kev T 1/2 = 85 ms b p = 70% S. Hofmann et al., Z. Phys. A305 (1982) 111

Proton radioactivity I (N, Z) Energy conservation π i i p j p = l p ± 1 2 I π f f (N, Z - 1) Q p 2 2 2 = Mi c Mf c mh c = Sp > 0 Angular momentum and parity conservation r I r r = I f + p + r 1 2 π i = 1 i l ( ) p f π l

Proton radioactivity (Z, N) (Z - 1, N ) + p V(r) neutrons protons Q p r

Probability of proton emission λ p = S ν P lj S spectroscopic factor ν frequency of proton movement in nucleus ν v 2R 21 1 = 6 10 s P lj probability of barrier penetration P lj = e 2G G lj Gamow s factor lj

Gamow s factor R out ( V ( r) Q ) = Gl j 2 R in 2µ h p 30 ~ p dr V p (r) interaction potential V (r) = V (r) + V (r) + V(r) p N R in, R out turning points C l V p (MeV) 20 0-10 V C V 151 p (l = 5) Lu 10 V p (l = 0) R in R out -20 10 20 30 40 50 r (fm)

WKB calculations for 151 Lu 100 (s) WK KB T 1/2 10 1 0.1 0.01 1E-3 1E-4 1E-5 151 71Lu l = 3 l = 4 l = 5 1.0 1.2 1.4 1.6 Q p (MeV)

WKB calculations for 151 Lu 100 1.24 MeV 10 1 151 71Lu WKB T (s) 1/2 0.1 0.01 1E-3 l = 3 l = 4 l = 5 T 1/2 = 0.12 s 1E-4 1E-5 1.0 1.2 1.4 1.6 Q p (MeV) WKB T1 / 2 for l p = 5 = 0. 6 exp T 1/ 2

Single-particle states MeV 0 d 3/2 82 151 Lu 71 80-5 h 11/2 s 1/2 d 5/2 g 7/2 64 50 h 9/2 Valent particles: 5 protons on h 11/2 p 5/2 2 neutrons on d 3/2 f 7/2-10 82-15 protons neutrons d 3/2 h 11/2 s 1/2

S factors for p emitters with 64 < Z < 82 filled proton orbitals : s 1/2, d 3/2 i h 11/2 S = u f 2 S ex xp 151 Lu 80 78 76 74 72 70 68 66 64 Z f P.J. Woods et al., Anu. Rev. Nucl. Part. Sci. 47 (1997) 541

Proton decay of 131 Eu 63 production in fusion-evaporation reaction 78 Kr + 58 Ni 136 Gd * 131 Eu + p4n σ = 90 nb recoil mass separation (FMA Argonne) beam E r B r E r A/q target decay spectroscopy

decay spectroscopy detector Double-sided Silicon Strip Detector ions A/q = 131 / 31 + (X, E X, t) (Y, E Y, t) Typical parameters: 40 40 0.1 mm 40 40 strips Rgistration of (X, E x, t) and (Y, E Y, t) enables: determination of X and Y position energy measurement determination of implantation decay time

Proton decay of 131 Eu 63 t = 100 ms 932 kev 131 Eu T 1/2 = 18 ms E p = 932 kev 0 + 130 Sm 0 120 hours of measurement A. Sonzogni et al., Phys. Rev. Lett. 83 (1999) 1116

Single-particle states for 131 Eu 63 MeV 0 d 3/2 h 11/2 82 for transition 131 Eu(d 5/2 ) 130 Sm(0 + ) + p -5-10 -15 s 1/2 d 5/2 g 7/2 64 50 protons 82 neutrons h 9/2 p 5/2 f 7/2 d 3/2 h 11/2 s 1/2 WKB l p = 2 T 1/2 = 0.5 ms S exp = 0.5 ms 18 ms = 0.02 S 2 th = u j = 0.52!!! B.Barmore et al., Phys. Rev. C62 (2000) 054315

Map of nuclear deformation 151 Lu β 2 = 0.1 131 Eu β 2 = 0.3 Z Eu

Fine structure in the p-decay of 131 Eu 63 t = 100 ms 932 kev 131 Eu 121 T 1/2 = 18 ms 24 % 811 kev 76 % 2 + 121 0 + 130 Sm 0 Systematics of E(2 + ) vs β 2 E(2 + ) = 121 kev β 2 0.35 A. Sonzogni et al., Phys. Rev. Lett. 83 (1999) 1116

WF structure of odd proton in 131 Eu 63 [ N, n ] c N, l, j π Ω,Λ z = l,j lj 100 80 70 clj 2 60 3/2 + [411] 40 Energia (M MeV) 20 0 100 80 17 10 2 d 3/2 d 5/2 g 7/2 g 9/2 2 84 clj 60 40 5/2 + [413] β 2 20 0 6 9 d 3/2 d 5/2 g 7/2 g 9/2 B.Barmore et al., Phys. Rev. C62 (2000) 054315

Calculations including deformation Lifetime 70 feeding of 2 + 40 60 T + 1/2 (0 ) (ms) 50 40 30 20 10 3/2 + [411] 5/2 + [413] I(2 + ) / I tot (%) 30 20 10 3/2 + [411] 5/2 + [413] 0 0,24 0,28 0,32 0,36 0 0,24 0,28 0,32 0,36 β 2 β 2 Conclusion: proton emission from deformed 3/2 + [411] state observed C. Davids et al., Phys. Rev. Lett. 80 (1998) 1849

Known proton emitters 30 p-decays of ground states 15 p-decays of isomers 82 50 L. protonów 20 28 50 82 β - β + α stable decay decay decay p decay L. neutronów

p and 2p radioactivty proton radioactivity two-proton radioactivity - stable - β + - β - - α - fission - p

Two-proton radioactivity (3 isotopes) (Z, N) (Z - 2, N ) + p + p

2p emission process V(r) neutrons protons E 2p r r

Two-proton radioactivity prediction - V. Goldansky in 1960 10 Separation energy (MeV) 8 6 4 2 0-2 Z = 26 S 2p S p 45 46 47 48 49 50 51 Ene ergy 43 Cr 44 Mn 2p 45 Fe β Mass number single proton branch closed large Q β value

Experimental challenges detection of individual protons energy measurement determination of angular correlation Predicted p-p opening angle for 45 Fe L. Grigorenko : simulation for 200 events

Experiment at NSCL / MSU Production: 58 Ni (161 MeV/u ) + nat Ni 45 Fe Identification in-flight: E + TOF OTPC

Ion identification 45 Fe: 2 / hour 43 Cr: 8 / min.

Optical Time Projection Chamber 150 V/cm v drift = 1 cm/µs 9 kv/cm 0.5 kv/cm 14 kv/cm active volume 66%He + 32%Ar gating electrode amplification CCD PMT light detection M. Ćwiok et al., IEEE TNS, 52 (2005) 2895 K. Miernik et al., NIM A581 (2007) 194

Optical Time Projection Chamber (1 3) 15 cm CCD 2/3 1000 1000 pix. 12-bits image ampl. ( 2000) 20 cm Frame Grabber Digitizer 100 MHz D A Q trigger 5 PMT

Protons after beta decay of 13 O 13 O 3/2 - T 1/2 = 8 ms p CCD 1.59 MeV 3/2 - p 1.44 MeV 13 O -1.94 MeV 13 N 12 C+ p 0 MeV PMT 200 ns K. Miernik. et al., NIM A 581(2007)194

Protons after beta decay of 13 O CCD p p 13 O 13 O PMT 4.1µs 3.7µs

Events reconstruction Z t θ Y L Z = v d t X φ PMT XY CCD L XY Track coordinates (r, Θ, φ ) L XY = r sinθ L Z = r cosθ r 2 = L XY2 + L Z 2 Θ = arctan( L XY /L Z )

2p decay of 45 Fe CCD 45 Fe 45 Fe zoom K. Miernik et al., PRL 99, 192501 (2007)

Decay scheme of 45 Fe 0-2 -4 44 Mn+p 45 Fe 43 Cr+2p β + 70% 30% 2p β + -6 Energy [MeV] -8-10 -12-14 -16-18 -20-22 β2p βp 41 Sc+2p 42 Ti+p 43 V 45 Mn β3p β2p βp 43 V+2p 42 Ti+3p 44 Cr+p

β + decay of 45 Fe 24 events βp 10 events β2p 4 events β3p K. Miernik et al., PRC 76 (2007) 041304(R)

Lifetime of 45 Fe Counts / 0.8 ms 25 20 15 10 5 T 1/2 = 2.6 ± 0.2 ms 0 0 2 4 6 8 10 12 14 16 18 Time (ms)

Partial 2p half-life of 45 Fe Γ 2p [MeV] 10 18 10 19 10 20 45 Fe 26 p 2 1.0 50.0 0.9 24.0 0.8 10.1 1.0 98.4 The fitting configuration p 2 /f 2 30/70 0.5 0.9 1.0 1.1 1.2 1.3 Q 2p [MeV] f 2 10 3 10 2 old exp. this work SMEC R-matrix T 2p [s] 1/2 3-body model: L.V. Grigorenko and M.V. Zhukov, PRC 68 (2003) 054005 SMEC: J. Rotureau, J. Okołowicz, M. Płoszajczak, NPA 767 (2006) 13 R-matrix: B.A. Brown, F.C. Barker, PRC 67 (2003) 041304

p-p angular correlation 12 Uncertainties of θ included 10% p 2 24% p 2 43% p 2 Events 8 4 0 0 30 60 90 120 150 180 θ pp [deg] K. Miernik et al., PRL 99, 192501 (2007) L.V. Grigorenko and M.V. Zhukov, PRC 68 (2003) 054005

Summary studies of p and 2p decays provide information on: - limits of nuclear existence - masses of exotic nuclei - sequence of single-particle states - structure of WF of nuclear states