The FERMI Large Area Telescope in orbit

Similar documents
The Fermi Gamma-ray Space Telescope

First Year Fermi Gamma ray Space Telescope Observations of Centaurus A

Gamma Ray Physics in the Fermi era. F.Longo University of Trieste and INFN

GLAST. Welcome and Introductions. GLAST Pre-launch Media Telecon May 27, The Gamma-ray Large Area Space Telescope

GLAST. Gamma-ray Large Area Space Telescope. Telescope. P. Michelson GLAST LAT Spokesperson Stanford University

GLAST Mission: Status and Science Opportunities

Ronaldo Bellazzini (INFN-Pisa) on behalf of the Fermi LAT Collaboration

Fermi Large Area Telescope:

Introduction. Technical and Production Status L. Klaisner. Instrument Science Operations Center Plans. Project Status, Cost and Schedule L.

First results on the high energy cosmic ray electron spectrum with the Fermi-LAT

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

Dark matter searches with GLAST

GLAST LAT Overview and Status

Anders W. Borgland. On behalf of the Fermi/LAT Collaboration. Fermi LAT ISOC/SLAC

Science of Compact X-Ray and Gamma-ray Objects: MAXI and GLAST

GLAST Large Area Telescope:

GLAST - Exploring the high- energy gamma-ray Universe

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Astrophysics with GLAST: dark matter, black holes and other astronomical exotica

The Gamma ray sky seen by. Telescope. F.Longo INFN Trieste, CIFS Torino. on behalf of the Fermi LAT collaboration

1 Introduction STATUS OF THE GLAST LARGE AREA TELESCOPE. SLAC-PUB December Richard Dubois. Abstract

Fermi: Highlights of GeV Gamma-ray Astronomy

Francesco Longo (INFN Trieste) on behalf of the Fermi LAT Collaboration

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET)

Gamma-ray Astronomy Missions, and their Use of a Global Telescope Network

arxiv: v2 [astro-ph.he] 26 Mar 2010

GLAST. Exploring the Extreme Universe. Kennedy Space Center. The Gamma-ray Large Area Space Telescope

The new event analysis of the Fermi Large Area Telescope

arxiv: v1 [astro-ph.he] 2 Jul 2009

The Fermi Gamma-ray Space Telescope

The Gamma Large Area Space Telescope: GLAST

Dr. John Kelley Radboud Universiteit, Nijmegen

Gamma-ray Astrophysics

GLAST Large Area Telescope:

The Sun and the Solar System in Gamma Rays

LAT Automated Science Processing for Gamma-Ray Bursts

Calibration of the AGILE Gamma Ray Imaging Detector

A New Look at the Galactic Diffuse GeV Excess

Experimental Particle

1. Motivation & Detector concept 2. Performance 3. Confirmation experiments 4. Summary

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope

GLAST Large Area Telescope:

The Fermi Large Area Telescope View of Gamma-ray Pulsars

Supernova Remnants as Cosmic Ray Accelerants. By Jamie Overbeek Advised by Prof. J. Finley

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

New results from Fermi-LAT and their implications for the nature of dark matter and the origin of cosmic rays

Future Gamma-Ray Observations of Pulsars and their Environments

FERMI. YOUNG PULSAR SPECTRA WITH THE LAT FERMI TELESCOPE Ateliers pulsars. 25 novembre 2008 Damien Parent. Gamma-ray Large Area Space Telescope

Space Astronomy Facilities

Sources of GeV Photons and the Fermi Results

The Fermi Large Area Telescope

Gamma-Ray. Pulsars in the. Les Pulsars gamma avec GLAST. NASA Goddard Space Flight Center. David Smith Centre d Etudes Nucléaires de BordeauxGradignan

(Fermi observations of) High-energy emissions from gamma-ray bursts

Gamma-ray observations of millisecond pulsars with the Fermi LAT. Lucas Guillemot, MPIfR Bonn. NS2012 in Bonn 27/02/12.

Particle Acceleration in the Universe

TeV Future: APS White Paper

Gamma-ray Astrophysics and High Density e+ e- Plasma - A new application of Free Electron Laser? -

Aldo Morselli INFN Roma Tor Vergata On behalf of Marco Tavani and the AGILE Team

GLAST, a Gamma-Ray Large Area Space Telescope

Can we constrain GRB shock parameters using the Gamma Ray Large Area Space Telescope? Eduardo do Couto e Silva SLAC/KIPAC SABER Workshop Mar 15, 2006

Cherenkov Telescope Array ELINA LINDFORS, TUORLA OBSERVATORY ON BEHALF OF CTA CONSORTIUM, TAUP

Supporting the GLAST User Community

Pulsar Observations with the Fermi Large Area Telescope

from Fermi (Higher Energy Astrophysics)

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy

COSMIC RAYS DAY INTRODUCTION TO COSMIC RAYS WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII

Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics. PAMELA MissioN 17 December 2010 Prepared by FatiH KAYA

Experimental review of high-energy e e + and p p spectra

High-Energy Emission from GRBs: First Year Highlights from the Fermi Gamma-ray Space Telescope

Radiation Issues in GLAST Si

T. J. Brandt. CRISM: 27 Jun On behalf of the Fermi- LAT Collabora:on IRAP/Université Paul Saba:er.

A NEW GENERATION OF GAMMA-RAY TELESCOPE

Dark Matter Particle Explorer: The First Chinese Cosmic Ray and Hard γ-ray Detector in Space

The Extreme Universe Rene A. Ong Univ. of Michigan Colloquium University of California, Los Angeles 23 March 2005

A. Takada (Kyoto Univ.)

Fermi-LAT Recent Results on Gamma-Ray Bursts

GLAST The Gamma-ray Large Area Space Telescope The next great step in space-based gamma-ray astrophysics

GLAST and beyond GLAST: TeV Astrophysics

Instrumentation Issues

EBL Studies with the Fermi Gamma-ray Space Telescope

The γ-ray sky after two years of the Fermi satellite Jean Ballet (AIM, CEA/DSM/IRFU/SAp) on behalf of the Fermi LAT Collaboration

GLAST Large Area Telescope

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

Very High-Energy Gamma- Ray Astrophysics

New results from Fermi

Understanding the gamma-ray sky: 2+ years of Fermi data. Toby Burnett University of Washington. University of Pavia Physics Colloquium 13 May 2011

Two Space High Energy Astrophysics Missions of China: POLAR & HXMT

Status of the MAGIC telescopes

Sep. 13, JPS meeting

The Fermi Gamma-Ray Sky

Update on the Two Smoking Gun" Fermi LAT Searches for Dark Matter- Milky Way Dwarfs and Lines

GLAST. Gamma Ray Large Area Space Telescope. Hartmut F.-W. Sadrozinski. Science Design Performance. Santa Cruz Institute for Particle Physics (SCIPP)

Recent Observations of Supernova Remnants

GRB Simulations in GLAST

Fermi-LAT Searches for gamma-ray pulsars

Recent highlights from VERITAS

Gamma-ray Observations of Blazars with VERITAS and Fermi

Highlights from the Fermi Symposium

Overview of the GLAST Observatory Current status of two instruments (GBM and LAT)

When a Standard Candle Flickers: The Dimming of the Crab Nebula. Gary Case

Transcription:

The FERMI Large Area Telescope in orbit Luca Latronico (INFN-Pisa) luca.latronico@pi.infn.it on behalf of the Fermi LAT Collaboration Very High Energy Phenomena in the Universe Moriond,, 1-81 8 February 2209

Features of the EGRET gamma-ray sky EGRET all-sky (galactic coordinates) E>100 MeV diffuse extra-galactic background (flux ~ 1.5x10-5 cm -2 s -1 sr -1 ) galactic diffuse (flux ~30 times larger) high latitude (extra-galactic) point sources (typical flux from EGRET sources O(10-7 -10-6 ) cm -2 s -1 ) galactic sources (pulsars, un-id d) An essential characteristic: VARIABILITY in time! Field of view important for study of transients.

Fermi Science: Very high energy phenomena in the Universe A very broad menu that includes: Systems with supermassive black holes (Active Galactic Nuclei) Gamma-ray bursts (GRBs) Pulsars Supernova remnants (SNRs), PWNe, Origin of Cosmic Rays Diffuse emissions Solar physics Probing the era of galaxy formation, optical-uv background light Solving the mystery of the high-energy unidentified sources Discovery! New source classes. Particle Dark Matter? Other relics from the Big Bang? Other fundamental physics checks. Huge increment in capabilities needed to address these Draws the interest of both the High Energy Particle Physics and High Energy Astrophysics communities.

The Observatory Large AreaTelescope (LAT) 20 MeV - >300 GeV Gamma-ray Burst Monitor (GBM) NaI and BGO Detectors 8 kev - 30 MeV Spacecraft Partner: General Dynamics KEY FEATURES Huge field of view LAT: 20% of the sky at any instant; in sky survey mode, expose all parts of sky for ~30 minutes every 3 hours. GBM: whole unocculted sky at any time. Huge energy range, including largely unexplored band 10 GeV - 100 GeV. Total of >7 energy decades! Large leap in all key capabilities. Great discovery potential.

The Accelerator

Launch! Launch from Cape Canaveral Air Station 11 June 2008 at 12:05PM EDT Circular orbit, 565 km altitude (96 min period), 25.6 deg inclination.

A moment later

and then

on its way!

Fermi in orbit Circular orbit, 565 km altitude (96 min period), 25.6 degrees inclination http://observatory.tamu.edu:8080/trakker (track the satellite) http://www.nasa.gov/mission_pages/glast/news/glast_online.html (look at Fermi in the sky from home) August 26 2008, after completion of successful observatory and instrument checkout, NASA renames GLAST to Fermi

Operating modes Primary observing mode is Sky Survey Full sky every 2 orbits (3 hours) Uniform exposure, with each region viewed for ~30 minutes every 2 orbits Best serves majority of science, facilitates multiwavelength observation planning Exposure intervals commensurate with typical instrument integration times for sources EGRET sensitivity reached in days Pointed observations when appropriate (selected by peer review in later years) with automatic earth avoidance selectable. Target of Opportunity pointing. Autonomous repoints for onboard GRB detections in any mode.

MISSION ELEMENTS GPS μsec Large Area Telescope & GBM Fermi Spacecraft Telemetry 1 kbps - DELTA 7920H - GN - S TDRSS SN S & Ku Mission Operations Center (MOC) Schedules Science Support Center LAT Instrument Science Operations Center White Sands HEASARC GRB Coordinates Network Alerts Schedules GBM Instrument Operations Center Data, Command Loads

Overview of the Large Area Telescope Overall modular design: Overall modular design: 4x4 array of identical towers - each one including a Tracker, a Calorimeter and an Electronics Module Surrounded by an Anti-Coincidence shield (not shown in the picture) 3ton 650watts

Overview of the Large Area Telescope Anti-Coincidence (ACD): Segmented (89 tiles). Self-veto @ high energy limited. 0.9997 detection efficiency (overall). γ Tracker/Converter (TKR): Silicon strip detectors (single sided, each layer is rotated by 90 degrees with respect to the previous one). W conversion foils. ~80 m 2 of silicon (total). ~10 6 electronics chans. High precision tracking, small dead time. e + e - Calorimeter (CAL): 1536 CsI crystals. 8.5 radiation lengths. Hodoscopic. Shower profile reconstruction (leakage correction)

LAT Collaboration an AP-HEP partnership France CNRS/IN2P3, CEA/Saclay Italy INFN, ASI, INAF Japan Hiroshima University ISAS/JAXA RIKEN Tokyo Institute of Technology Sweden Royal Institute of Technology (KTH) Stockholm University United States Stanford University (SLAC and HEPL/Physics) PI: Peter Michelson (Stanford) ~390 Scientific Members (including 96 Affiliated Scientists, plus 68 Postdocs and 105 Students) Cooperation between NASA and DOE, with key international contributions from France, Italy, Japan and Sweden. Managed at SLAC. University of California, Santa Cruz - Santa Cruz Institute for Particle Physics Goddard Space Flight Center Naval Research Laboratory Sonoma State University The Ohio State University University of Washington

Year 1 Science Operations Timeline Plan spacecraft turn-on checkout LAT, GBM turn-on check out first light whole sky Observatory renaming pointed + sky survey tuning Start Year 1 Science Ops sky survey + ~weekly GRB repoints + extraordinary TOOs Start Year 2 Science Ops week week week week month 12 m o n t h s LAUNCH initial tuning/calibrations L+60 days in-depth instrument studies 2nd Symposium 2-5 Nov. Thus far: 14 Atels on flaring sources >100 GRB alerts (GCN) GI Cycle 1 Funds Release Release Flaring and Monitored Source Info GBM and LAT GRB Alerts continuous release of new photon data Fellows Year 1 Start GI Cycle 2 Proposals LAT 6-month high-confidence source release, GSSC science tools advance release LAT Year 1 photon data release PLUS LAT Year 1 Catalog and Diffuse Model

From Simulation to reconstruction and science analysis Accurate detector model >45k volumes Physical interactions modeled with Geant4 MC validation ground test with CR muons on the full LAT beam test on a calibration unit 100M evts of γ, e, p, e+, C, Xe between 50MeV and 300GeV collected at CERN and GSI in 2006 γ π sneaking dump

Event and rejection analysis Full subsystems reconstruction (clusters, tracks, energy) Quality knobs on event direction and energy reconstrution Subsystem specific vetoes for background events + classification trees to optimize selection and provide probabilities for the event to be a photon ACD hermeticity, veto tiles struck by tracks, veto large pulse height from heavies, veto low PH in corners TKR de/dx (layer-or), preshower image (distribution of clusters around tracks) CAL shower shape (EM vs had), veto back and side entering evts Event classes definition based on overall background rate Major on-going developments Charged particles branch ACD vetoed events go to a particleid analysis branch to tag candidate e, p, heavies by means of shower shape (TKR+CAL) TKR-only events to enhance response to transients (GRB) CAL-only events considered to enhance photon acceptance

Instrument Response Functions http://www-glast.slac.stanford.edu/software/is/glast_lat_performance.htm Effective area (cm 2 ) transient class source class diffuse class PSF 68% containment on-axis 60 off-axis Energy disp 68% cont on-axis 60 off-axis Philosophy Instrument response mapped into analytical functions or simple tables General simulation for allpurpose analysis vs specific analysis MC sim Serve large community of users Systematics from response representation choice and MC fidelity

On orbit rates in nominal configuration Overall trigger rate: ~few KHz Huge variations due to orbital effects. Downlink rate: ~400 500 Hz ~90% from GAMMA filter ~20 30 Hz from DGN filter ~5 Hz from HIP filter Rate of photons after the standard background rejection cuts for source study: ~1 Hz Most of the downlinked events are in fact background, final ~ 1000:1 rejection is done in ground processing.

LAT Gamma Candidate Events Flight Data The green crosses show the detected positions of the charged particles, the blue lines show the reconstructed track trajectories, and the yellow line shows the candidate gamma-ray estimated direction. The red crosses show the detected energy depositions in the calorimeter.

Tracker performance and calibration No evidence of a reduction in hit efficiency (well above 99% on average) No significant change in the alignment constants (intra and intertower) after the launch (the LAT underwent up to 4 g acceleration + vibration) No evidence of any increase in the overall noise level (~1 noise hit per event for the full LAT).

Stability of CAL and ACD ACD veto threshold set to 0.4MIPs 1% drift over 4 months CAL average zero-suppression threshold 1% drift over 4 months

LAT Data

Big Questions From EGRET Era How and where do pulsars emit gamma rays? How common are radio-quiet pulsars? necessary clue to magnetic field configurations and dynamics What are the EGRET Unidentified Sources? most of the EGRET detected sources are a mystery What are the energy budgets of gamma-ray bursts? What are the temporal characteristics of the high-energy emission? not well characterized yet, key tests of models, beaming What are the origins of the diffuse emissions? galactic: cosmic-ray and matter distributions; sources extragalactic: populations new sources (Dark Matter annihilations, clusters, ) How do the supermassive black hole systems of AGN work? Why do the jets shine so brightly in gamma rays? temporal and spectral variability over different timescales What remains to be discovered with great new capabilities?? EGRET showed us the tip of the iceberg. New sources and probes for new physics.

Some answers at Moriond 2009 Resolving the gamma-ray sky Bright source list (Ballet, mon) Performance studies (Germani, fri) Solar system gamma-ray astronomy (Brigida, fri) Pulsar physics and populations Giordano (mon), Parent, Guillemot, Kerr, Razzano (fri) Galactic sources Smith (wed), Grondin (thu), Hill (thu) Gamma-ray bursts phenomenology and emission models Baldini, Pelassa, Granot, Preece (mon) Diffuse emission GeV excess (Johannesson, mon) Active galactic nuclei Population studies (Lott, thu) Multiwavelength (Sanchez, thu)

Discovery of First Gamma-ray ray-only Pulsar A radio-quiet, gamma-ray only pulsar, in Supernova Remnant CTA1 Quick discovery enabled by large leap in key capabilities new analysis technique (Atwood et al) P ~ 317 ms Pdot ~ 3.6E-13 Abdo et al., Science Express, 16 Oct. 2008 Spin-down luminosity ~10 36 erg s -1, sufficient to supply the PWN with magnetic fields and energetic electrons. The γ-ray flux from the CTA 1 pulsar corresponds to about 1-10% of E rot (depending on beam geometry) Age ~(0.5 1)x10 4 years Distance ~ 1.4 kpc Diameter ~ 1.5 1420 MHz Radio Map: Pineault et al., A&A 324, 1152 (1997)

First Fermi view of the Vela Pulsar 100 MeV < E < 10 GeV Remarkably sharp peaks; features to ~0.3ms. Turns nearly completely off between the double pulses. <2.8% of phaseaveraged pulsed emission, 95% confidence Stringent limits or measurement will be available with more livetime

The Pulsing Sky Pulses at 1/10 th true rate

Re-measuring environmental background and CR Pre-launch simulation Proton Electron Positron Neutron Alpha Pre-launch accurate model of incoming backgrounds to train rejection analysis and OBF tuning Overall rejection power up to 1:10 6 (trigger + On- Board-Filter + ground rejection) On-going validation with LAT measurements Unparalleled CR statistics On-going CR measurements with the LAT High energy electrons stay tuned!

Refining instrument response - pileup events CR rate is a steep function of earth magnetic field Fraction of off-time particles in the detector which leave ghost signal in coincidence with gammas Between 2% and 15% depending on magnetic latitude Ghost effect confuse/slow tracking and pattern recognition ( CALseeded track recon) Alter event topology and fake bkg rejection topological cuts Ghost track Triggering gamma

Assessment of pile-up effects PRELIMINARY Simulations enriched with ghosts from real periodic trigger events indicate Larger effect at low energies Maximum of 40% lower efficiency at 100MeV on-axis wrt pre-launch simulations Rapidly decreasing with energy - negligible above 10GeV Maximum effect on flux (over all spectrum) 30% bias Maximum effect on spectral parameters (for E -2 power law) 0.1 bias Very close to early papers assessment of systematics Much reduced systematics when corrected for! On-going work for corrections Correct IRFs for difference using simulations with ghosts Filter ghost events before recon Retrain event selection after addition of ghost in simulation + recon-filtering release post-launch IRFs for public data

The Fermi voice alerts and publications Post-launch Papers 1 published 1 accepted 5 submitted 15 hot or close to submission

Conclusions The Fermi observatory is well off into its adventure Instruments performing as expected and very stable Very smooth commissioning and nominal operations LAT performance well understood Post-launch performance tuning on-going Many exciting science results are coming up every day Rapid confirmation of many EGRET results Many alerts for transients (AGN flares GRBs) A strong and broad program of physics is coming together Particle acceleration in cosmic machines Fundamental physics Enjoy the many Fermi talks at Moriond and stay tuned http://www.nasa.gov/fermi Guest Investigator Cycle 2 proposals DUE March 6, 2009, see http://fermi.gsfc.nasa.gov/ssc/proposals/cycle2/ November 2-5 2009 International Fermi Symposium in Washington, DC