Chapter Taylor Theorem Revisited

Similar documents
Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Taylor and Maclaurin Series

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

1985 AP Calculus BC: Section I

Taylor Polynomials and Approximations - Classwork

PURE MATHEMATICS A-LEVEL PAPER 1

Probability & Statistics,

CDS 101: Lecture 5.1 Reachability and State Space Feedback

UNIT 2: MATHEMATICAL ENVIRONMENT

A Review of Complex Arithmetic

CDS 101: Lecture 5.1 Reachability and State Space Feedback

Technical Support Document Bias of the Minimum Statistic

Topic 9 - Taylor and MacLaurin Series

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

Problem Value Score Earned No/Wrong Rec -3 Total

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

Trigonometric functions

Partition Functions and Ideal Gases

Exponential Functions

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

TAYLOR AND MACLAURIN SERIES

CS537. Numerical Analysis and Computing

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Digital Signal Processing, Fall 2006

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

CS321. Numerical Analysis and Computing

First derivative analysis

Power Series: A power series about the center, x = 0, is a function of x of the form

Representing Functions as Power Series. 3 n ...

AP Calculus BC AP Exam Problems Chapters 1 3

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Pipe flow friction, small vs. big pipes

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

Error for power series (Day 2) YOU MAY USE YOUR CALCULATOR TO COMPUTE FRACTIONS AND OTHER SIMPLE OPERATIONS

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

Section 11.6: Directional Derivatives and the Gradient Vector

9.3 Power Series: Taylor & Maclaurin Series

Maclaurin and Taylor series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Iterative Methods of Order Four for Solving Nonlinear Equations

ln x = n e = 20 (nearest integer)

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

In its simplest form the prime number theorem states that π(x) x/(log x). For a more accurate version we define the logarithmic sum, ls(x) = 2 m x

APPENDIX: STATISTICAL TOOLS

An Introduction to Asymptotic Expansions

Chapter (8) Estimation and Confedence Intervals Examples

Example 2. Find the upper bound for the remainder for the approximation from Example 1.

On the approximation of the constant of Napier

On Some Numerical Methods for Solving Initial Value Problems in Ordinary Differential Equations

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not.

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Discrete Fourier Transform (DFT)

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

Math 113 Exam 3 Practice

Solution to 1223 The Evil Warden.

Physics 43 HW #9 Chapter 40 Key

Higher order derivatives

CHAPTER 11 Limits and an Introduction to Calculus

Taylor Series (BC Only)

+ x. x 2x. 12. dx. 24. dx + 1)

e to approximate (using 4

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem.

3-2-1 ANN Architecture

H2 Mathematics Arithmetic & Geometric Series ( )

Fourier Series and Transforms

LIMITS AND DERIVATIVES

Normal Form for Systems with Linear Part N 3(n)

An Introduction to Asymptotic Expansions

Math 113 Exam 4 Practice

NUMERICAL DIFFERENTIAL 1

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling


AP Calculus Multiple-Choice Question Collection

LIMITS AND DERIVATIVES NCERT

A Simple Proof that e is Irrational

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Ordinary Differential Equations

Chapter 4 - The Fourier Series

Calculus II - Problem Drill 21: Power Series, Taylor and Maclaurin Polynomial Series

Law of large numbers

Calculus 2 TAYLOR SERIES CONVERGENCE AND TAYLOR REMAINDER

1973 AP Calculus BC: Section I

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments.

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.)

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

( a) ( ) 1 ( ) 2 ( ) ( ) 3 3 ( ) =!

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Transcription:

Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o a uctio at ay poit, giv t valus o t uctio ad all its drivativs at a particular poit,. calculat rrors ad rror bouds o approimatig a uctio by Taylor sris, ad 5. rvisit t captr wvr Taylor s torm is usd to driv or plai umrical mtods or various matmatical procdurs. T us o Taylor sris ists i so may aspcts o umrical mtods tat it is imprativ to dvot a sparat captr to its rviw ad applicatios. For ampl, you must av com across prssios suc as 6 cos( ) + + ()!! 6! 5 7 si( ) + + ()! 5! 7! + + + + () All t abov prssios ar actually a spcial cas o Taylor sris calld t Maclauri sris. Wy ar ts applicatios o Taylor s torm importat or umrical mtods? Eprssios suc as giv i Equatios (), () ad () giv you a way to id t approimat valus o ts uctios by usig t basic aritmtic opratios o additio, subtractio, divisio, ad multiplicatio. Eampl Fid t valu o 0.5 usig t irst iv trms o t Maclauri sris. T irst iv trms o t Maclauri sris or + + + +! is 0.07.

0.07. Captr 0.07 0.5 0.5 0.5 0.5 + 0.5 + + +!.80 0.5 T act valu o up to 5 sigiicat digits is also.80. But t abov discussio ad ampl do ot aswr our qustio o wat a Taylor sris is. Hr it is, or a uctio + + + + + () providd all drivativs o ist ad ar cotiuous btw ad +. Wat dos tis ma i plai Eglis? As Arcimds would av said (witout t i prit), Giv m t valu o t uctio at a sigl poit, ad t valu o all (irst, scod, ad so o) its drivativs, ad I ca giv you t valu o t uctio at ay otr poit. It is vry importat to ot tat t Taylor sris is ot askig or t prssio o t uctio ad its drivativs, just t valu o t uctio ad its drivativs at a sigl poit. Now t i prit: Ys, all t drivativs av to ist ad b cotiuous btw (t poit wr you ar) to t poit, + wr you ar watig to calculat t uctio t at. Howvr, i you wat to calculat t uctio approimatly by usig t ordr st d t Taylor polyomial, t,,..., drivativs d to ist ad b cotiuous i t t closd itrval [, + ], wil t ( +) drivativ ds to ist ad b cotiuous i t op itrval (, + ). Eampl Tak si, w all kow t valu o si. W also kow t cos ad cos 0. Similarly si() ad si. I a way, w kow t valu o si ad all its drivativs at. W do ot d to us ay calculators, just plai dirtial calculus ad trigoomtry would do. Ca you us Taylor sris ad tis iormatio to id t valu o si? + 0.90

Taylor Torm Rvisitd 0.07. So Hc!! ( + ) + + + + ( ) + 0.90 si, si cos, 0 si, cos(), 0 si(), + + +! +!! + +! ( 0.90) ( 0.90) ( 0.90) + 0.90 + 0( 0.90) + 0 + +!!! + 0 0.0906 + 0 + 0. 009+ 0.909 T valu o si I gt rom my calculator is 0. 9090 wic is vry clos to t valu I just obtaid. Now you ca gt a bttr valu by usig mor trms o t sris. I additio, you ca ow us t valu calculatd or si coupld wit t valu o cos (wic ca b calculatd by Taylor sris just lik tis ampl or by usig t si + cos idtity) to id valu o si at som otr poit. I tis way, w ca id t valu o si or ay valu rom 0 to ad t ca us t priodicity o si, tat is si si +,,, si at ay otr poit. ( ) to calculat t valu o Eampl Driv t Maclauri sris o si( ) + + I t prvious ampl, w wrot t Taylor sris or si aroud t poit Maclauri sris is simply a Taylor sris or t poit 0. si, ( 0 ) 0! 5 5! 7 7!.

0.07. Captr 0.07 cos, si, cos si, cos() 0 ( 0 ) 0, 0 ( 0 ) 0, 0 Usig t Taylor sris ow, 5 5 0 + 0 + 0 + 0 5 + 0 + 0 + 0 5 0 + 0 + 0 5 + 0 + 0 + 0 + 5 5 0 + ( ) 0 + 0 + + 5 5 + +! 5! So 5 +! 5! 5 si( ) +! 5! ( + ) + + + + + + + Eampl Fid t valu o ( 6) giv tat ( ) 5 otr igr drivativs o at ar zro. Sic ourt ad igr drivativs o, 7, ( ) 0 ( + ) + + + + 6 ar zro at. ( + ) + + + 6 5 + 7 + 0 + 6!! 5 + 8 + 60 + 8 6, ad all

Taylor Torm Rvisitd 0.07.5 Not tat to id 6 actly, w oly dd t valu o t uctio ad all its drivativs at som otr poit, i tis cas,. W did ot d t prssio or t uctio ad all its drivativs. Taylor sris applicatio would b rdudat i w dd to kow t prssio or t uctio, as w could just substitut 6 i it to gt t valu o ( 6). Actually t problm posd abov was obtaid rom a kow uctio + + + 5 wr ( ) 5, ( ) 7, ( ) 0, ( ) 6, ad all otr igr drivativs ar zro. Error i Taylor Sris As you av oticd, t Taylor sris as iiit trms. Oly i spcial cass suc as a iit polyomial dos it av a iit umbr o trms. So wvr you ar usig a Taylor sris to calculat t valu o a uctio, it is big calculatd approimatly. T Taylor polyomial o ordr o a uctio () wit ( +) cotiuous drivativs i t domai [, + ] is giv by ( ) + + + '' + + + R!! wr t rmaidr is giv by + ( ) ( + R ) () c. ( + )! wr < c < +, +. tat is, c is som poit i t domai Eampl 5 T Taylor sris or at poit 0 is giv by 5 + + + + + +! 5! a) Wat is t trucatio (tru) rror i t rprstatio o i oly our trms o t sris ar usd? b) Us t rmaidr torm to id t bouds o t trucatio rror. a) I oly our trms o t sris ar usd, t + + + + + +.66667 T trucatio (tru) rror would b t uusd trms o t Taylor sris, wic t ar

0.07.6 Captr 0.07 5 E t + +! 5! 5 + +! 5! 0.0565 b) But is tr ay way to kow t bouds o tis rror otr ta calculatig it dirctly? Ys, ( ) + + + + + R! wr + ( ) ( + R ) () c, < c < +, ad ( + )! c is som poit i t domai (, + ). So i tis cas, i w ar usig our trms o t 0, Taylor sris, t rmaidr is giv by + ( 0 ) ( + R ) () c ( + )! ( ) () c! c Sic < c < + 0 < c < 0 + 0 < c < T rror is boud btw 0 < R () < < R () < 0.0667 < R () < 0. 6 So t boud o t rror is lss ta o 0.0565. Eampl 6 0.6 wic dos cocur wit t calculatd rror T Taylor sris or at poit 0 is giv by 5 + + + + + +! 5! As you ca s i t prvious ampl tat by takig mor trms, t rror bouds dcras ad c you av a bttr stimat o. How may trms it would rquir to gt a approimatio o witi a magitud o tru rror o lss ta 0 6?

Taylor Torm Rvisitd 0.07.7 Usig ( + ) trms o t Taylor sris givs a rror boud o + ( ) ( + R ) () c ( + )! 0,, + ( 0 ) ( + R ) 0 () c ( + )! + ( ) c ( + )! Sic < c < + 0 < c < 0 + 0 < c < < R ( 0) < ( + )! ( + )! So i w wat to id out ow may trms it would rquir to gt a approimatio o witi a magitud o tru rror o lss ta 0 6, 6 < 0 ( + )! 6 ( + )! > 0 ( + )! > 0 6 (as w do ot kow t valu o but it is lss ta ). 9 So 9 trms or mor will gt witi a rror o 0 6 i its valu. W ca do calculatios suc as t os giv abov oly or simpl uctios. To do a similar aalysis o ow may trms o t sris ar dd or a spciid accuracy or ay gral uctio, w ca do tat basd o t cocpt o absolut rlativ approimat rrors discussd i Captr 0.0 as ollows. W us t cocpt o absolut rlativ approimat rror (s Captr 0.0 or dtails), wic is calculatd atr ac trm i t sris is addd. T maimum valu o m m, or wic t absolut rlativ approimat rror is lss ta 0.5 0 % is t last umbr o sigiicat digits corrct i t aswr. It stabliss t accuracy o t approimat valu o a uctio witout t kowldg o rmaidr o Taylor sris or t tru rror.

0.07.8 Captr 0.07 INTRODUCTION TO NUMERICAL METHODS Topic Taylor Torm Rvisitd Summary Ts ar ttbook ots o Taylor Sris Major All girig majors Autors Autar Kaw Dat April, 009 Wb Sit ttp://umricalmtods.g.us.du